

Dual bootstrap in Quantlab

< Guide for use of the dual bootstrap functionality>

Version: 1.22

Last update: 2015-03-10

© 2002-2015 Algorithmica Research AB. All rights reserved.

 Algorithmica Research AB / Magnus Nyström

Page | 2

Table of contents

1. Introduction .. 4

2. Creating a discount function ... 6

2.1. Wrapper functions ... 6

2.2. The disc_z_model object .. 8

2.3. The swap_curve_disc_ext object .. 12

2.4. Code examples ... 13

2.4.1. example1 - basic ... 13

2.4.2. example2 ... 14

3. Creating a forward function .. 16

3.1. FRA/IRS wrapper function .. 16

3.2 The fwd_z_model object .. 18

3.3 The swap_curve_fwd_ext object .. 20

3.4. Creating synthetic short instruments (before the first FRA) .. 21

3.5. Forward index rate interpolation .. 22

3.6. The forward function <fwd_func> .. 22

3.7. FRA/IRS/BasisSwap(2Swap) wrapper function .. 23

3.8. The swap_curve_b2_ext object .. 24

3.9. FRA/IRS/BasisSwap(1Swap) wrapper function .. 25

3.10. The swap_curve_b1_ext object .. 27

3.11. Code examples ... 28

3.11.1. example1 - basic ... 28

3.11.2. example 2 .. 29

 Algorithmica Research AB / Magnus Nyström

Page | 3

4. Creating an fx implied discount function .. 31

4.1. Wrapper functions for currency basis swaps .. 31

4.2. The swap_curve_bc_ext object .. 34

4.3. Wrapper functions for currency fix-float swaps .. 35

4.4. The swap_curve_cff_ext object .. 39

5. Creating a swap surface .. 40

6. Curves.. 42

References ... 45

 Algorithmica Research AB / Magnus Nyström

Page | 4

1. Introduction

This document describes how to use the dual curve bootstrap functionality in Quantlab 3.1. By dual

curve bootstrap, we refer to the new paradigm in the swap market for curve construction where the

forward index rates (projecting rates) and discount rates are separate curves. The “old style” curve

construction used the same curve for the forward index rates and for discounting. The market standard

discount curve now consists of OIS rates.

Curve construction in the swap market, in the new paradigm, means paying attention to the tenor of the

forward index rates (i.e. tenor basis spreads) and carefully select the instruments from which the curves

are created and the blending principles applied. Normally it is necessary to also create synthetic

instruments (e.g. FRA and/or Deposits) in specific, basis curve consistent, ways to fill up some segments

of the forward curve or discount curve. In addition, it is desirable to obtain smooth (forward) curves.

Quantlab offers several interpolation models with excellent smoothness properties (e.g. Adams-

Deventer Maximum Smoothness-model , Hagan-West forward monotone convex spline, tension splines,

etc). It is also possible to apply Hyman filters to models where it is relevant. Furthermore, when

creating the forward index rates, in Quantlab, the interpolation models operate directly on the tenor

rate that is calculated, ensuring a “smooth” behavior of the forward rates and more direct control over

the rates you are ultimately interested in. The swap curve in each currency is, in the new paradigm, best

described as a swap-“surface” where the extra dimension is the tenor of the forward index rate.

Quantlab also provides a swap-surface object from which interpolated rates for non-standard tenors can

be obtained.

For bootstrapping the discounting curve (single curve bootstrap), Quantlab includes, in addition to all

standard single curve bootstrap features, modeling with a step function between Central bank meeting

dates while, if desired, simultaneously using a different interpolation model for the longer end of the

curve.

Quantlab 3.1 encapsulates all the complexities involved and provides ways to create discount functions

and forward curves in a very succinct way.

Typically the instruments used in dual bootstrap are (all supported):

1. OIS swaps

2. Deposits (normally synthetic)

3. Forward rate agreements (FRA) (real and synthetic)

4. Money market futures

5. IRS (fixed/floating interest rate swap)

 Algorithmica Research AB / Magnus Nyström

Page | 5

6. Basis swaps - as 2 swaps

7. Basis swaps - as 1 swap

There are principally two ways to use the dual bootstrap functionality. One is to use a set of core

Quantlab functions and classes. This will give the user maximum flexibility and control of every

aspect of the curve building process. The other way is to use a set of wrapper functions that tries to

provide “best-practice” curve building for a number of specific situations and therefore facilitates

the creation of discount functions and forward functions. This document describes the latter. The

code for the wrapper functions are available for viewing in Qlang, making it very easy for the user to

create different versions as well as understanding the details involved.

A selection of the provided wrapper functions are explained in this document, as follows:

1. disc_curve_create (base): builds a discount function, for example from OIS instruments,

2. disc_curve_create (extended): builds a discount function with the possibility to extend the curve

if it is shorter than the swap curve.

3. fwd_curve_create: builds a forward function from FRA/IRS (and synthetic instruments)

4. fwd_b2_curve_create: builds a forward function from FRA/IRS/Basis swap(2swaps) (and synthetic

instruments)

5. fwd_b1_curve_create: builds a forward function from FRA/IRS/Basis swap(1swap) (and synthetic

instruments)

6. cb_curve_base_disc, cb_curve_flat_disc: creates a currency curve and calculates fx-implied

discount functions.

7. swap_surface_b2_create: creates a swap curve surface with all tenors from FRA/IRS/Basis

swap(2swap). (A swap_surface_b1_create is available but not discussed).

The wrapper functions not discusses in this document are principally the same as the ones explained

but varies in terms of input instruments and other details.

Additionally, cross currency curve building is also supported but only discussed briefly in this

document.

 Algorithmica Research AB / Magnus Nyström

Page | 6

2. Creating a discount function

2.1. Wrapper functions

A discount function can be created with a single wrapper function call. There are two main versions, a

base version and an extended version. The extended version allows for extending the discounting curve

based on a second curve by extrapolating the basis spread between the discounting curve and the

extrapolation curve.

Base version:

disc_func disc_curve_create(date trade_date,

curve option(nullable) short_curve,

curve option(nullable) middle_curve,

curve option(nullable) long_curve,

curve_prio prio1,

curve_prio prio2,

logical no_overlap_middle,

logical merge_middle,

logical merge_crv,

integer blend_buf_days,

disc_z_model disc_model,

out swap_curve_disc_ext disc)

Arguments and return values explained:

Return value Comment

disc_func The disc_func object represents a discount function. This object has many member

functions (see the Quantlab function browser).

Arguments Data type Comment

trade_date date Trade date.

short_curve curve The curve for the short segment of the discounting

curve. Typically, this is the segment for instruments with

time-to-maturity of less than 1 year.

middle_curve curve The curve for the middle segment of the discounting

curve. This segment of the curve is intended to be used

 Algorithmica Research AB / Magnus Nyström

Page | 7

for forward starting instruments such as FRA or Futures.

long_curve curve The curve for the long segment of the discounting curve.

prio1 curve_prio Indicates which segment has first priority. Short segment

= CP_SHORT, middle segment = CP_MIDDLE and long

segment = CP_LONG.

prio2 curve_prio Indicates which segment has second priority. Short

segment = CP_SHORT, middle segment = CP_MIDDLE and

long segment = CP_LONG.

no_overlap_middle logical Determines how the blending between the short and

middle segments of the curve is done in terms of the last

included short instrument. If this flag is true (false) then

the blending assures that maturity of the last short

instrument is before settlement (maturity) of the first

middle instrument. Ex. If false then a 3M Deposit is

allowed together with a 2X5 FRA.

merge_middle logical The middle segment is merged into the curve.

merge_crv logical All curve segments are merged into the curve.

blend_buf_days integer The minimum number of days between “corner”

instruments for the curve segments in the curve

blending.

disc_model disc_z_model the model object (see below)

out Arguments Data type Comment

disc swap_curve_disc_ext This object represents the created discounting curve

object from which several results and information

can be retrieved e.g. the blended curve (see below).

Extended version:

disc_func disc_curve_create(date trade_date,

curve option(nullable) short_curve,

curve option(nullable) middle_curve,

curve option(nullable) long_curve,

curve extrap_curve,

string class_name,

curve_prio prio1,

curve_prio prio2,

logical no_overlap_middle,

 Algorithmica Research AB / Magnus Nyström

Page | 8

logical merge_middle,

logical merge_crv,

integer blend_buf_days,

disc_z_model disc_model,

disc_z_model extrap_model,

out swap_curve_disc_ext disc)

Most arguments are the same as for the base version above and, hence, are not explained here. The

additional arguments are:

Arguments Data type Comment

extrap_curve extrap_curve Base curve used to extend the discounting curve. The synthetic

instruments appended to the discounting curve are Deposits or

FRA contracts and their rates are calculated by extrapolating

the basis spread.

class_name string Class name for the instruments to be added (Deposit or FRA).

extrap_model disc_z_model the extrapolation model object (see below)

2.2. The disc_z_model object

The disc_z_model object is created from a disc_model_parm object.

disc_model_parm disc_p = disc_model_parm();

The disc_model_parm is an object that represents all settings relevant for a model. It is first created as a

default object where all settings are set to default values. The default values are all configurable by the

user in the file fiws_user_config.ql. All defaults can be overridden by using an appropriate set function.

It is possible to set a specific model with default values and as well as setting all model specific

parameters individually.

When a disc_model_parm object is created with the desired properties we can create the disc_z_model

object.

disc_z_model disc_model = init_disc_model(disc_p);

The model set functions exist in two versions where one is exposing all model specific arguments and

one will use the model specific default settings.

 Algorithmica Research AB / Magnus Nyström

Page | 9

model set functions Model enum Comment

set_model(disc_z_model_type)

set_model(string)

 general set function for a model

set_model_boot(…) DZ_BOOT standard bootstrap

set_model_step(…) DZ_ON_STEP bootstrap with a piecewise flat

O/N rate.

set_model_max_smooth(…) DZ_MAX_SMOOTH Adams/Deventer maximum

smoothness model.

set_model_max_smooth_spread(…) DZ_MAX_SMOOTH_SPREAD Adams/Deventer maximum

smoothness model where exact

fit is defined as being within a

certain spread (per instrument)

set_model_step_boot(…) DZ_ON_STEP_BOOT standard bootstrap combined

with a piecewise flat O/N rate, up

to the step_end date (see below).

set_model_tanggaard(…) DZ_TANGGAARD maximum smoothness model

with residuals.

set_model_tension_w_exact(…) DZ_TENSION_W_EXACT exact fit tension spline model on

w. We refer to the reference for

the tension spline for explanation

of w.

set_model_tension_w_spread(…) DZ_TENSION_W_SPREAD tension spline model on w where

exact fit is defined as being within

a certain spread (per instrument).

set_model_tension_y_exact(…) DZ_TENSION_Y_EXACT exact fit tension spline model on

spot rate.

set_model_tension_y_spread(…) DZ_TENSION_Y_SPREAD tension spline model on spot rate

where exact fit is defined as being

within a certain spread (per

instrument).

set_model_tension_z_exact(…) DZ_TENSION_Z_EXACT exact fit tension spline model on

instantaneous forward rate.

set_model_tension_z_spread(…) DZ_TENSION_Z_SPREAD tension spline model on

instantaneous forward rate where

exact fit is defined as being within

a certain spread (per instrument).

 Algorithmica Research AB / Magnus Nyström

Page | 10

For details on the maximum smoothness model, see Adams-Van Deventer and Forsgren references in

the reference section.

For details on the tension spline models, see the Andersen, L. reference in the reference section.

For details on the Tanggaard model, see the Tanggaard reference in the reference section.

Other set functions are:

set functions Model Comment

set_cal(calendar) all sets the calendar

set_cb_dates(vector(date) all except DZ_ON_STEP and

DZ_ON_STEP_BOOT

sets the central bank meeting dates

set_mc_force_pos(logical) DZ_BOOT,

DZ_ON_STEP_BOOT

and only when disc_ip_type =

DIPT_HAGAN_WEST

sets a flag in the Hagan West model to

control enforcement of positive rates.

set_apply_hyman(logical) DZ_BOOT,

DZ_ON_STEP_BOOT

sets a flag if the hyman filter will be

applied.

set_ip(disc_ip_type) DZ_BOOT,

DZ_ON_STEP_BOOT

sets the interpolation scheme. Available

models includes:

1. DIPT_HAGAN_WEST: Hagan/West

monotone convex spline.

2. DIPT_HERMITE_AKIMA:

3. DIPT_HERMITE_CR:

4. DIPT_HERMITE_FINDIFF:

5. DIPT_HERMITE_FB:

6. DIPT_HERMITE_KRUGER:

7. DIPT_HERMITE_MONO:

8. DIPT_HERMITE_P:

9. DIPT_LINEAR: linear interpolation

10. DIPT_SPLINE_NAT : natural cubic

spline interpolation

11. DIPT_SPLINE_FIN : financial cubic

spline interpolation

12. DIPT_STEP: step function

interpolation.

set_rt(rate_type) DZ_BOOT, sets the interpolation rate type. Available

 Algorithmica Research AB / Magnus Nyström

Page | 11

DZ_ON_STEP_BOOT choices are:

RT_CONT: Continuous compounding.

RT_ON: Daily compounding.

RT_SIMPLE: Simple compounding.

RT_EFFECTIVE: Annual effective

compounding.

RT_SEMI_ANNUAL: Semi-annual

compounding.

RT_QUARTERLY: Quarterly compoundin

RT_MONTHLY: Monthly compounding.

RT_BANKDISC: Bank discount rate.

RT_LOGDF: Log of the discount function

Note: the Hagan/West model is only

defined for RT_CONT.

set_left_der(number) DZ_BOOT, sets the left derivative in the

interpolation scheme.

set_hermite_right_der(

number)

DZ_BOOT,

DZ_ON_STEP_BOOT

sets the right derivative in the

interpolation scheme for the hermite

models.

set_step_end(number) DZ_ON_STEP_BOOT sets the step end date.

set_spreads(vector(number)) DZ_MAX_SMOOTH_SPREAD,

DZ_TENSION_Y_SPREAD,

DZ_TENSION_W_SPREAD,

DZ_TENSION_Z_SPREAD

sets the instrument spreads for spread

models. If the vector has one element it

will be used for all instruments.

Otherwise the vector should have the

same size as the number of instruments

in the blended curve.

set_spread_type(

z_mod_spread_type)

DZ_MAX_SMOOTH_SPREAD,

DZ_TENSION_Y_SPREAD,

DZ_TENSION_W_SPREAD,

DZ_TENSION_Z_SPREAD

sets the instrument spread type for

spread models. Available choices are:

ZMS_BP: spread in basis points

ZMS_P: spread in price

set_sigma(vector(number),

vector(number))

DZ_TENSION_Y_EXACT,

DZ_TENSION_W_ EXACT,

DZ_TENSION_Z_ EXACT,

DZ_TENSION_Y_SPREAD,

DZ_TENSION_W_SPREAD,

DZ_TENSION_Z_SPREAD

sets the sigma. We refer to the reference

for the tension spline for explanation of

sigma.

set_epsilon(number) DZ_TENSION_W_EXACT,

DZ_TENSION_W_SPREAD

sets the epsilon. We refer to the

reference for the tension spline for

 Algorithmica Research AB / Magnus Nyström

Page | 12

explanation of epsilon.

set_w_factor(number) DZ_TANGGAARD sets the w factor. We refer to the

reference for the tanggaard model for

explanation of w.

set_std_w(std_weights) DZ_TANGGAARD sets the standard weights.

set_smooth_m(

smoothness_measure)

DZ_MAX_SMOOTH,

DZ_MAX_SMOOTH_SPREAD,

DZ_TANGGAARD

sets the smoothness measure. We refer

to the reference for the maximum

smoothness model for explanation of this

measure.

set_xpol_type(

disc_extrap_type)

set_xpol_type(string);

all sets the extrapolation type. Available

choices are:

DXP_MODEL: extrapolation according to

selected model.

DXP_MODEL_FLAT: flat extrapolation of

the rate type for the model.

DXP_ON_FLAT: extrapolation with flat

O/N rate.

The corresponding string arguments are:

"MODEL", "MODEL_FLAT", "ON_FLAT".

set_xpol_cut(number

option(nullable));

all sets the extrapolation cutoff period. The

period is defined as the number calendar

days between the “cutoff” date and

trade date divided by 365. Two values

have a specific meaning:

-1: no cutoff

0 or null: cutoff at curve max date

2.3. The swap_curve_disc_ext object

The swap_curve_disc_ext object (inherited from swap_curve_ext) represents the created discounting
curve and contains the input data and several intermediate results as well as provides access to and
calculates the general disc_func object.

The member functions are:

Function Arguments Comment

curve blended_curve() none Returns the blended curve. The

 Algorithmica Research AB / Magnus Nyström

Page | 13

blended curve is the actual
instruments used in the curve
building procedure. Depending
on the blending parameters
several instruments is likely to be
excluded and if an extrapolation
curve is used several instruments
may be added to the curve.

string name() none Returns the name of the curve.

disc_func disc_df() none Returns the discount function.

disc_func disc_df(…) disc_z_model disc_model,

interpolator option(nullable) disc_ip,

rate_type option(nullable) disc_ip_rt,

vector(dates) option(nullable) cb_dates,

number option(nullable) step_end

Returns the discount function but
with the possibility to override
the model arguments. The
arguments are described above.

date curve_end() none Returns the end date of the
curve.

2.4. Code examples

The examples below uses a slightly different disc_curve_create (…) function than was explained above.

The only difference is that here the creation of the curve object and calculation of the disc_func is done

in two steps.

2.4.1. example1 - basic

Assume we would like to use the default values for the Hagan-West model.

//--Step 1-- create the discount model

// create a disc_model_parm object with default values

disc_model_parm disc_p = disc_model_parm();

 Algorithmica Research AB / Magnus Nyström

Page | 14

/*if we would like to override any default value in the disc_model_parm object this is where all the set

functions should be applied. Here we override the default model to set the model to Hagan-West using

default values for this model. Since the Hagan-West model is implemented as an interpolation scheme

in the bootstrap model we use the function set_model_boot(…). There is one model function,

update_spreads(…), which may need to be used after the curve object is created , see below. */

disc_p.set_model_boot(DIPT_HAGAN_WEST) ;

// create the model object

disc_z_model disc_model = init_disc_model(disc_p);

//--Step 2-- create the discount curve with blending parameters

number blend_buf_days = 5;

logical no_overlap_middle = false;

logical merge_middle = false;

logical merge_crv = false;

curve_prio prio1 =CP_LONG;

curve_prio prio2 =CP_MIDDLE;

swap_curve_disc_ext disc = disc_curve_create(today, null<curve>,null<curve>, long_crv, prio1,

prio2, no_overlap_middle, merge_middle, merge_crv, blend_buf_days);

/* if a model with spreads is used (eg. DZ_MAX_SMOOTH_SPREAD) and we wish to set a spread per

instrument this is where we would use the update_spreads() function (because it is only after the

swap_curve_disc_ext object is created that we know the blended curve)*/

// create the disc_func

disc_func df_ois = disc.disc_df (disc_model);

2.4.2. example2

//--Step 1-- create the discount model

// create a disc_model_parm object with default values

disc_model_parm disc_p = disc_model_parm();

// set model parameters one by one

disc_p.set_model(“BOOT”); //bootstrap

disc_p.set_rt(“CONT”) ; //continuously compounded spot rates

 Algorithmica Research AB / Magnus Nyström

Page | 15

disc_p.set_ip(“SPLINE_FIN”) ; //financial spline

disc_p.set_left_der(0); //flat extrapolation to the left

disc_p.set_xpol_type(“ON_FLAT”); //flat extrapolation of O/N rate to the right

disc_p.set_xpol_cut(-1); //-1->no cutoff

disc_p.set_apply_hyman(true); // apply hyman filter

// create the model object

disc_z_model disc_model = init_disc_model(disc_p);

//create the extrapolation model from defaults

disc_model_parm extrap_p = disc_model_parm();

disc_z_model extrap_model = init_disc_model(extrap_p);

//--Step 2-- create the extrapolated discount curve with blending parameters

number blend_buf_days = 5;

logical no_overlap_middle = false;

logical merge_middle = false;

logical merge_crv = false;

curve_prio prio1 =CP_LONG;

curve_prio prio2 =CP_MIDDLE;

swap_curve_disc_ext disc_base = disc_curve_create(today, null<curve>,null<curve>, long_crv,

 prio1, prio2, no_overlap_middle,

 merge_middle, merge_crv, blend_buf_days);

swap_curve_disc_ext disc = disc_curve_create(today, disc_base, extrap_curve,

 depo_class_name, extrap_model);

// create the disc_func

disc_func df_ois = disc.disc_df (disc_model);

 Algorithmica Research AB / Magnus Nyström

Page | 16

3. Creating a forward function

3.1. FRA/IRS wrapper function

A forward function based on a short curve, FRA curve and an IRS curve can be created with a single

wrapper function call.

fwd_func fwd_curve_create(date trade_date,

disc_func df_disc,

disc_func df_synt_base,

date synt_end,

curve option(nullable) short_curve,

curve option(nullable) middle_curve,

curve option(nullable) long_curve,

curve_prio prio1,

curve_prio prio2,

string option(nullable) depo_class_name,

string option(nullable) fra_class_name,

synt_short_style synt,

fwd_z_model fwd_model,

logical merge_middle,

logical merge_crv,

integer blend_buf_days,

vector(number) option(nullable) edfut_cvx_adj,

out swap_curve_fwd_ext fwd_crv,

number option(nullable) long_first_fix)

Arguments and return values explained:

Return value Comment

fwd_func The fwd_func object represents a forward rate function (see the Quantlab function

browser for available member functions).

Arguments Data type Comment

trade_date date Trade date.

df_disc disc_func The discount function e.g. OIS.

df_synt_base disc_func Discount function used as base discount function when

creating the synthetic instruments.

 Algorithmica Research AB / Magnus Nyström

Page | 17

synt_end date The maturity of the longest instrument for the curve used to

calculate df_synt_base. This date will be used to specify the

maximum length of the basis curve used for creating

synthetic instruments (in order to avoid extrapolation).

short_curve curve The curve for the short segment of the forward curve,

typically just the relevant tenor deposit rate. If this curve

contains a “full” deposit curve, all non-relevant tenor rates

will be removed.

middle_curve curve The curve for the FRA/Futures segment of the forward

curve. All FRAs must have the same tenor and the same

tenor as the IRS floating leg.

long_curve curve The curve for the IRS segment of the forward curve. All

swaps must have the same tenor of the floating leg and this

tenor must match all the FRA/Futures contract tenors.

prio1 curve_prio Indicates which segment has first priority (SHORT, MIDDLE

or LONG)

prio2 curve_prio Indicates which segment has second priority (SHORT,

MIDDLE or LONG)

depo_class_name string Class name for relevant Deposits (for synthetic instruments).

fra_class_name string Class name for relevant FRA contracts (for synthetic

instruments). Used only when synt = SY_FRA.

synt synt_short_style Possible choices are SY_FRA, SY_DEPO and SY_NONE. There

are two built-in ways to create synthetic instruments for the

short end of the curve up to the first FRA/ Futures contract.

(As explained above, if the user wish to use a different

principle it is possible to access the core functions directly.)

SY_FRA: In this case, both synthetic FRAs and a single

synthetic Deposit are created. The FRAs are all of the

relevant tenor and starting 1w, 2w and every month until

the first FRA starts. The added Deposit has a maturity equal

to the tenor.

 SY_DEPO: Only a synthetic Deposit is created with the

relevant tenor i.e. with maturity equal to the tenor.

SY_NONE: No synthetic instruments are created.

For details on the creation of synthetic short instruments,

 Algorithmica Research AB / Magnus Nyström

Page | 18

see below.

fwd_model fwd_z_model The forward model object (see below)

merge_middle logical The FRA contracts are merged into the curve.

merge_crv logical All curve segments are merged into the curve.

blend_buf_days integer The minimum number of days between curve segments in

the curve blending.

vector(number) edfut_cvx_adj A vector of spreads that adjusts the FRA/Futures segment of

the curve. This parameter can, for example, be used to

provide a convexity adjustment for Futures.

number long_first_fix The first floating rate fixing for the IRS curve. If null, no fixing

is used.

out Arguments Data type Comment

fwd_crv swap_curve_fwd_ext This object represents the created forward curve

(without basis swaps) object from which several

results and information can be retrieved e.g. the

blended curve.

3.2 The fwd_z_model object

The fwd_z_model object is created from a fwd_model_parm object.

fwd _model_parm fwd _p = fwd _model_parm();

The disc_model_parm is an object that represents all settings relevant for a model. It is first created as a

default object where all settings are set to default values. The default values are all configurable by the

user in the file fiws_ user_config.ql. All defaults can be overridden by using an appropriate set function.

It is possible to set a specific model with default values and as well as setting all model specific

parameters individually.

When a fwd_model_parm object is created with the desired properties we can create the fwd_z_model

object.

fwd _z_model fwd _model = init_ fwd _model(fwd _p);

The model set functions exist in two versions where one is exposing all model specific arguments and

one will use the model specific default settings.

 Algorithmica Research AB / Magnus Nyström

Page | 19

set function Model enum Comment

set_model(fwd_z_model_type)

set_model(string)

 general set function for a model

set_model_linear(…) FZM_LINEAR linear interpolation

set_model_spline_nat(…) FZM_SPLINE_NAT natural cubic spline interpolation

set_model_spline_fin(…) FZM_SPLINE_FIN financial cubic spline

interpolation

set_model_step(…) FZM_STEP step interpolation

set_model_step_linear(…) FZM_STEP_LINEAR step interpolation with linear

interpolation between knot

points.

set_model_hermite_akima(…) FZM_HERMITE_AKIMA

set_model_hermite_cr(…) FZM_HERMITE_CR

set_model_hermite_findiff(…) FZM_HERMITE_FINDIFF

set_model_hermite_fb(…) FZM_HERMITE_FB

set_model_hermite_kruger(…) FZM_HERMITE_KRUGER

set_model_hermite_mono(…) FZM_HERMITE_MONO

set_model_hermite_p(…) FZM_HERMITE_P

set_model_tension_exact(…) FZM_TENSION_EXACT exact fit tension spline

set_model_tension_spread(…) FZM_TENSION_SPREAD tension spline model where exact

fit is defined as being within a

certain spread (per instrument).

For details on the tension spline models, see the Andersen, L. reference in the reference section.

Other set functions are:

set functions Model Comment

set_apply_hyman(logical) sets a flag if the hyman filter will be

applied

set_left_der(number) sets the left derivative in the

interpolation scheme

set_hermite_right_der(number) sets the right derivative in the

interpolation scheme for the hermite

models

set_spreads(vector(number)) sets the instrument spreads for

spread models. If the vector has one

 Algorithmica Research AB / Magnus Nyström

Page | 20

element it will be used for all

instruments. Otherwise the vector

should have the same size as the

number of instruments in the

blended curve.

set_spread_type(

z_mod_spread_type)

FZM_TENSION_SPREAD sets the instrument spread type for

spread models. Available choices are:

ZMS_BP: spread in basis points

ZMS_P: spread in price

set_sigma(vector(number),

vector(number))

FZM_TENSION_EXACT,

FZM_TENSION_SPREAD

sets the sigma. We refer to the

reference for the tension spline for

explanation of sigma.

set_xpol_type(disc_extrap_type)

set_xpol_type(string);

all sets the extrapolation type. Available

choices are:

FXP_MODEL: extrapolation according

to selected model.

FXP_TENOR_FLAT: flat extrapolation

of the rate type for the model.

The corresponding string arguments

are: "MODEL", "TENOR_FLAT".

set_xpol_cut(number

option(nullable));

all sets the extrapolation cutoff period .

Two values have a specific meaning:

-1: no cutoff

0 or null: cutoff at curve max date

3.3 The swap_curve_fwd_ext object

The swap_curve_fwd_ext object (inherited from swap_curve_ext) represents a forward curve (created
without basis swaps) and contains the input data and several intermediate results as well as provides
access to and calculates the general fwd_func object.

The member functions are:

Function Arguments Comment

curve blended_curve() none Returns the blended curve. The
blended curve is the actual
instruments used in the curve
building procedure. Depending on
the blending parameters several
instruments is likely to be excluded
and any added synthetic instruments

 Algorithmica Research AB / Magnus Nyström

Page | 21

will also be present.

string name() none Returns the name of the curve.

number fix_freq() none Returns the fixed leg frequency of
the IRS curve.

number flt_freq() none Returns the forward rate tenor.

disc_func disc_df() none Returns the discount function.

cashflows_fwd cf_fwd() none Returns the cashflows_fwd object.
This object is the most basic
representation of the instruments
used to create the forward curve and
is the input to the bootstrap_fwd(…)
function (see the Quantlab function
browser)

fwd_func fwd() none Returns the forward function.

fwd_func fwd(…) interpolator fwd_ip

Returns the forward function but
with the possibility to override the
interpolation argument. The
argument is described above.

fwd_func fwd_comb(…) fwd_func fwd_pre,
date cut_off

Returns a forward function. This
version allows to use a previously
calculated fwd_func for the
beginning of the curve up to a date
specified by the cut_off argument.

fwd_func fwd_comb(…) fwd_func fwd_pre,
date cut_off,
interpolator fwd_ip

As the previous function but with the
possibility to override the
interpolation argument. The
argument is described above.

curve imp_swap_curve(…) fwd_func f_flt_idx Returns the implied IRS curve from a
given fwd_func.

fwd_func fwd_risk(…) interpolator fwd_ip,
number r_shift,
logical const_basis,
out disc_func df_disc

Returns a shifted fwd_func
calculated from a parallel shift of all
instruments in the underlying curve.
The parallel shift is specified by
r_shift. If const_basis is true then the
discount function will also be shifted
in a way that preserves the basis
spread.

date curve_end() none Returns the end date of the curve.

3.4. Creating synthetic short instruments (before the first FRA)

 Algorithmica Research AB / Magnus Nyström

Page | 22

The synthetic instruments, if included, are created from a base discount function and its basis spread vs.

the FRA contracts.

Step 1. Create a basis spread function using all the FRAs and the provided base discount function. The

base discount function could be an OIS discount function, a discount function calculated from a

different tenor forward function or any other discount function.

Step 2. Calculate the implied rates for the synthetic instruments from the base discount function and

add the interpolated basis spread from step 1.

The created instruments now have a basis consistent with the FRA contracts and they will provide added

information for the short end of the curve. Their curvature will depend on the base discount function

and the interpolated basis spread.

3.5. Forward index rate interpolation

The interpolation models used when creating a forward function operates directly on the tenor rate we

wish to calculate. This ensures that we get forward rates without the oscillating behavior that

sometimes can be seen in the standard bootstrapping models for a discount function (when

interpolating different types of spot rates). See below for some typical forward rate examples.

3.6. The forward function <fwd_func>

The forward function contains all the forward rates for any date for a certain tenor. The member

function fwd() which takes an Act365 period (from trade date) as argument returns the rate. Of course,

if the period corresponds to a point used in the original curve we get this point exactly otherwise, it is

interpolated with the model used in the bootstrap-function.

For example, assume the forward function is calculated for a 6M tenor and we wish to calculate the

forward rate in one month i.e. we would like to know the 1x7 forward rate. Assume today is 9-Sep-2011

and the 1M date is 13-Oct-2011.

fwd_func f_fwd = fwd_curve_create(…);

fwd_rate_1x7 = f_fwd.fwd((#2011-10-13 - #2011-09-09)/365);

 Algorithmica Research AB / Magnus Nyström

Page | 23

3.7. FRA/IRS/BasisSwap(2Swap) wrapper function

This version uses FRA/Futures, IRS and Basis swaps (2 Swaps) and the short end of the curve can be

created synthetically.

fwd_func fwd_b2_curve_create(date trade_date,

disc_func df_disc,

disc_func df_synt_base,

date synt_end,

curve option(nullable) short_out_curve,

curve option(nullable) middle_out _curve,

curve option(nullable) long_in_curve,

curve option(nullable) basis_t1t2_curve,

curve_prio prio1,

curve_prio prio2,

string option(nullable) depo_class_name,

string option(nullable) fra_out_class_name,

synt_short_style synt,

fwd_z_model fwd_model,

logical merge_middle,

logical merge_crv,

integer blend_buf_days,

vector(number) option(nullable) edfut_cvx_adj,

logical x_pol_basis,

out swap_curve_b2_ext fwd_crv,

number option(nullable) first_fix_out)

Since most arguments are the same as for the previous wrapper, only the unique arguments will be

explained. Note, “in” and “out” stands for the different tenors involved and the “out curve” is the tenor

we are calculating. If there are more or less tenors available in the basis curve compared to the

underlying swap curve (i.e. long_in_curve) the missing tenor instruments will be created synthetically

based on linear interpolation. If there are fewer basis swaps than underlying swaps the “missing” basis

swaps will be created. If there are more basis swaps than underlying swaps the “missing” underlying

swap will be created.

Arguments Data type Comment

basis_t1t2_curve curve The curve for the Basis swap of the forward curve. All Basis

 Algorithmica Research AB / Magnus Nyström

Page | 24

swaps must have one tenor of the floating leg that matches

the IRS curve. The tenor of the other floating leg must

match the FRA contracts. The spreads must be a 2 swaps

quotation.

x_pol_basis logical If true the basis curve will be extrapolated, with a constant

basis spread, up to the length of the swap curve.

out Arguments Data type Comment

fwd_crv swap_curve_b2_ext This object represents the created forward curve object

(created via a basis swap quoted as 2 swaps) from which

several results and information can be retrieved e.g. the

blended curve.

Note that the FRA contracts correspond to the tenor we wish to calculate. The IRS combined with the

Basis swap will convert the IRS to the FRA tenor. For example, the FRA curve could be a [EUR 3M FRA]-

curve, the IRS curve could be a [EUR IRS 6M EURIBOR]-curve and the Basis swap could be a [EUR 3M/6M

EURIBOR]-curve. In this case “out” = 3M and “in” = 6M. The [EUR IRS 6M EURIBOR]-curve will be

converted to a [EUR IRS 3M EURIBOR]-curve and we proceed with calculations for the 3M tenor. We

could also, with the same principle, calculate the 6M tenor. A difference in daycount conventions

between the Basis swap and the IRS is handled by converting the basis spread.

3.8. The swap_curve_b2_ext object

The swap_curve_b2_ext object (inherited from swap_curve_ext) represents a forward curve (created
from basis swaps quoted as 2 swaps) and contains the input data and several intermediate results as
well as provides access to and calculates the general fwd_func object.

The member functions are:

Function Arguments Comment

curve blended_curve() none Returns the blended curve. The
blended curve is the actual
instruments used in the curve
building procedure. Depending on
the blending parameters several
instruments is likely to be excluded
and any added synthetic
instruments will also be present.

string name() none Returns the name of the curve.

 Algorithmica Research AB / Magnus Nyström

Page | 25

number fix_freq() none Returns the fixed leg frequency of
the IRS curve.

number flt_freq() none Returns the forward rate tenor.

disc_func disc_df() none Returns the discount function.

cashflows_fwd cf_fwd() none Returns the cashflows_fwd object.
This object is the most basic
representation of the instruments
used to create the forward curve
and is the input to the
bootstrap_fwd(…) function (see the
Quantlab function browser)

fwd_func fwd() none Returns the forward function.

fwd_func fwd(…) interpolator fwd_ip

Returns the forward function but
with the possibility to override the
interpolation argument. The
argument is described above.

fwd_func fwd_comb(…) fwd_func fwd_pre,
date cut_off

Returns a forward function. This
version allows to use a previously
calculated fwd_func for the
beginning of the curve up to a date
specified by cut_off.

fwd_func fwd_comb(…) fwd_func fwd_pre,
date cut_off,
interpolator fwd_ip

As the previous function but with
the possibility to override the
interpolation argument. The
argument is described above.

curve imp_swap_curve(…) fwd_func f_flt_idx Returns the implied IRS curve from a
given fwd_func.

fwd_func fwd_risk(…) interpolator fwd_ip,
number r_shift,
logical const_basis,
out disc_func df_disc

Returns a shifted fwd_func
calculated from a parallel shift of all
instruments in the underlying curve.
The parallell shift is specified by
r_shift. If const_basis is true then
the discount function will also be
shifted in a way that preserves the
basis spread.

date curve_end() none Returns the end date of the curve.

3.9. FRA/IRS/BasisSwap(1Swap) wrapper function

 Algorithmica Research AB / Magnus Nyström

Page | 26

This version uses FRA/Futures, IRS and Basis swaps (1 Swap) and the short end of the curve can be

created synthetically.

fwd_func fwd_b1_curve_create(date trade_date,

disc_func df_disc,

disc_func df_synt_base,

date synt_end,

curve option(nullable) short_in_curve,

curve option(nullable) middle_in_curve,

 number in_freq,

curve option(nullable) long_in_curve,

curve option(nullable) short_out_curve,

curve option(nullable) middle_out_curve,

curve option(nullable) basis_t1t2_curve,

curve_prio prio1,

curve_prio prio2,

string option(nullable) depo_class_name,

string option(nullable) fra_in_class_name,

string option(nullable) fra_out_class_name,

synt_short_style synt,

fwd_z_model fwd_model,

logical merge_middle,

logical merge_crv,

integer blend_buf_days,

vector(number) option(nullable) edfut_cvx_adj_in,

vector(number) option(nullable) edfut_cvx_adj_out,

out swap_curve_b1_ext fwd_crv,

number option(nullable) first_fix_base,

 number option(nullable) first_fix_flat)

This function is similar to the previous case with the difference that we have a complete FRA/IRS curve

for the tenor in the basis swap we take as input. If there are less tenors available in the basis curve

compared to the underlying swap curve (i.e. long_out_curve) the missing tenor basis swaps will be

created synthetically based on linear interpolation. There is one more wrapper available (not shown

here) that instead of the “in curves” takes a forward function (fwd_func) as input.

out Arguments Data type Comment

fwd_crv swap_curve_b1_ext This object represents the created forward curve object

(created via a basis swap quoted as 1 swap) from

 Algorithmica Research AB / Magnus Nyström

Page | 27

which several results and information can be retrieved

e.g. the blended curve.

The “out curves” represent the tenor we wish to calculate. The “in curves” will create a forward function

according to section 3.1. The “in” forward function combined with the Basis swap will create

instruments with the same tenor as the “out curves”. For example, the FRA in curve could be a [EUR 6M

FRA]-curve, the IRS in curve could be a [EUR IRS 6M EURIBOR]-curve, the FRA out curve could be [EUR

3M FRA]-curve and the Basis swap could be a [EUR 3M/6M EURIBOR]-curve. In this case, we calculate

the 3M tenor. We could also, with the same principle, calculate the 6M tenor.

3.10. The swap_curve_b1_ext object

The swap_curve_b1_ext object (inherited from swap_curve_ext) represents a forward curve (created
from basis swaps quoted as 1 swap) and contains the input data and several intermediate results as well
as provides access to and calculates the general fwd_func object.

The member functions are:

Function Arguments Comment

curve blended_curve() none Returns the blended curve. The
blended curve is the actual
instruments used in the curve
building procedure. Depending on
the blending parameters several
instruments is likely to be excluded
and any added synthetic
instruments will also be present.

string name() none Returns the name of the curve.

number fix_freq() none Returns the fixed leg frequency of
the IRS curve.

number flt_freq() none Returns the forward rate tenor.

disc_func disc_df() none Returns the discount function.

cashflows_fwd cf_fwd() none Returns the cashflows_fwd object.
This object is the most basic
representation of the instruments
used to create the forward curve
and is the input to the
bootstrap_fwd(…) function (see
the Quantlab function browser)

fwd_func fwd() none Returns the forward function.

fwd_func fwd(…) interpolator fwd_ip Returns the forward function but

 Algorithmica Research AB / Magnus Nyström

Page | 28

 with the possibility to override the
interpolation argument. The
argument is described above.

fwd_func fwd_comb(…) fwd_func fwd_pre,
date cut_off

Returns a forward function. This
version allows to use a previously
calculated fwd_func for the
beginning of the curve up to a date
specified by cut_off.

fwd_func fwd_comb(…) fwd_func fwd_pre,
date cut_off,
interpolator fwd_ip

As the previous function but with
the possibility to override the
interpolation argument. The
argument is described above.

curve imp_swap_curve(…) fwd_func f_flt_idx Returns the implied IRS curve from
a given fwd_func.

fwd_func fwd_risk(…) interpolator fwd_ip,
number r_shift,
logical const_basis,
out disc_func df_disc

Returns a shifted fwd_func
calculated from a parallel shift of
all instruments in the underlying
curve. The parallell shift is
specified by r_shift. If const_basis
is true then the discount function
will also be shifted in a way that
preserves the basis spread.

date curve_end() none Returns the end date of the curve.

3.11. Code examples

The examples below uses a slightly different fwd_curve_create (…) function than was explained above.

The only difference is that here the creation of the curve object and calculation of the fwd_func is done

in two steps.

3.11.1. example1 - basic

Assume we would like to use default values for all settings including the model itself.

//at this point we have created a disc_func

//--Step 1—create the forwarding model

//first create a fwd_model_parm object with default values

fwd_model_parm fwd_p = fwd_model_parm();

 Algorithmica Research AB / Magnus Nyström

Page | 29

/*if we would like to override any default value in the fwd_model_parm object this is where all

the set functions should be applied. There is one model function, update_spreads(…), which may need

to be used after the curve object is created, see below. */

// create the model object

fwd_z_model fwd_model = init_fwd_model(fwd_p);

//--Step 2-- create the forward curve with blending and synt parameters

number blend_buf_days = 5;

logical merge_middle = false;

logical merge_crv = false;

curve_prio prio1 =CP_LONG;

curve_prio prio2 =CP_MIDDLE;

synt_short_style synt = SY_FRA;

date ois_end = disc.curve_end();

swap_curve_fwd_ext fwd_crv = fwd_curve_create(today,df_ois,df_ois, ois_end, short_curve,

 middle_crv, long_crv, prio1, prio2,

 depo_class_name, fra_class_name, synt,

 merge_middle, merge_crv, blend_buf_days,

 null< vector(number)>, null<number>);

// if a model with spreads is used (eg. FZM_TENSION_SPREAD) and we wish to set a spread per

instrument this is where we would use the update_spreads() function (because it is only after the

swap_curve_fwd_ext object is created that we know the blended curve).*/

//and create the fwd_func

fwd_func f_fwd = fwd_crv.fwd(fwd_model);

3.11.2. example 2

//at this point we have created a disc_func

//--Step 1—create the forwarding model

//first create a fwd_model_parm object with default values

fwd_model_parm fwd_p = fwd_model_parm();

// set model parameters one by one

fwd_p.set_model(“TENSION_SPREAD”); //tension spline model with spreads

 Algorithmica Research AB / Magnus Nyström

Page | 30

fwd_p.set_sigma([1,10,30], [3,3,3]); //tension sigma x and y vector

fwd_p.set_xpol_type(“TENOR_FLAT”); //flat extrapolation of tenor rate to the right

fwd_p.set_xpol_cut(-1); //-1->no cutoff

fwd_p. set_spread_type (ZMS_BP); // spread type is set to basis points

fwd_p.set_spreads([0.5]); // spread is 0.5 basis points for all instruments

// create the model object

fwd_z_model fwd_model = init_fwd_model(fwd_p);

//--Step 2-- create the forward curve with blending and synt parameters

number blend_buf_days = 5;

logical merge_middle = false;

logical merge_crv = false;

curve_prio prio1 =CP_LONG;

curve_prio prio2 =CP_MIDDLE;

synt_short_style synt = SY_FRA;

date ois_end = disc.curve_end();

swap_curve_fwd_ext fwd_crv = fwd_curve_create(today,df_ois,df_ois, ois_end, short_curve,

 middle_crv, long_crv, prio1, prio2,

 depo_class_name, fra_class_name, synt,

 merge_middle, merge_crv, blend_buf_days,

 null< vector(number)>, null<number>);

//and create the fwd_func

fwd_func f_fwd = fwd_crv.fwd(fwd_model);

 Algorithmica Research AB / Magnus Nyström

Page | 31

4. Creating an fx implied discount function

4.1. Wrapper functions for currency basis swaps

An fx-implied discount function can be created with a single wrapper function call. There are two

versions, depending on which currency discount function should be calculated.

Discount function for the flat leg currency in the currency basis swap:

disc_func cb_curve_flat_disc (date trade_date,

instrument option(nullable) fx_spot,

curve option(nullable) fxswap_crv,

instr_class_name option(nullable) depo_class_fxbase,

instr_class_name option(nullable) depo_class_fxprice,

curve basis_crv,

number option(nullable) basis_first_fix_flat,

number option(nullable) basis_first_fix_sprd,

logical merge_crv,

logical prio_fxswap,

integer blend_buf_days,

disc_func option(nullable) df_disc_flat,

disc_func df_disc_sprd,

fwd_func f_fwd_flat,

fwd_func f_fwd_sprd,

string option(nullable) name,

interpolator option(nullable) disc_ip,

rate_type option(nullable) disc_ip_rt,

out swap_curve_bc_ext currb)

Arguments and return values explained:

Return value Comment

disc_func The disc_func object represents a discount function. This object has many member

functions (see the Quantlab function browser).

Arguments Data type Comment

trade_date date Trade date.

fx_spot instrument The fx spot currency. Required only if an fx-swap curve is

used in the short end.

 Algorithmica Research AB / Magnus Nyström

Page | 32

fxswap_crv curve The fx-swap curve. This curve is not required.

depo_class_fxbase instr_class_name Class name for Deposits in the base currency. Note that

base currency is related with the fx-swap curve (it does

not refer to the currency basis swap)

depo_class_fxprice instr_class_name Class name for Deposits in the price currency.

basis_crv curve The currency basis swap curve.

basis_first_fix_flat number The first floating rate fixing for the flat leg in the currency

basis curve. If null, no fixing is used.

basis_first_fix_sprd number The first floating rate fixing for the base leg in the

currency basis curve. If null, no fixing is used.

merge_crv logical All curve segments are merged into the curve.

prio_fxswap logical Indicates if the fx-swap instruments have first priority

when blending the curve.

blend_buf_days integer The minimum number of days between “corner”

instruments for the curve segments in the curve

blending.

df_disc_flat disc_func The discount function for the flat leg in the currency

basis curve. In the case where the flat leg discount

function is the output this argument is optional. If it is

not null then the output will be a spread-adjusted

discount function. This may be useful if one would like to

preserve the curvature of an input discount function.

df_disc_sprd disc_func The discount function for the base leg in the currency

basis curve.

f_fwd_flat fwd_func The forward rates of appropriate tenor for the flat leg in

the currency basis curve.

f_fwd_sprd fwd_func The forward rates of appropriate tenor for the base leg in

the currency basis curve.

name string An optional name of the blended currency curve.

disc_ip interpolator Interpolation model object. Available models includes:

1. ip_hagan_west(logical force_pos): Hagan/West

monotone convex spline, if force_pos = true, the

forward rates are enforced to be positive.

2. ip_hermite_4th_order() :

3. ip_hermite_akima():

4. ip_hermite_catmull_rom() :

5. ip_hermite_finite_diff ():

6. ip_hermite_fritsch_butland() :

7. ip_hermite_kruger():

 Algorithmica Research AB / Magnus Nyström

Page | 33

8. ip_hermite_monotone():

9. ip_hermite_parabolic():

10. ip_linear(): linear interpolation

11. ip_spline(): cubic spline interpolation

12. ip_step(): step function interpolation.

The interpolator object is created from the above

constructors. Each constructor has several more

arguments (not shown) related to extrapolation and

Hyman filters. It is possible to define extrapolation

properties both in the front and end of the curve. It is

also possible to apply different types of Hyman filters(eg.

monotonicity) to all interpolators except linear and the

Hagan/West model. All interpolation models are local

except spline. A detailed discussion on these models is

beyond the scope of this document.

disc_ip_rt rate_type Interpolation rate types. Available choices are:

RT_CONT: Continuous compounding.

RT_ON: Daily compounding.

RT_SIMPLE: Simple compounding.

RT_EFFECTIVE: Annual effective compounding.

RT_SEMI_ANNUAL: Semi-annual compounding.

RT_QUARTERLY: Quarterly compounding.

RT_MONTHLY: Monthly compounding.

RT_BANKDISC: Bank discount rate.

RT_LOGDF: Log of the discount function

Note: the Hagan/West model is only defined for

RT_CONT.

out Arguments Data type Comment

currb swap_curve_bc_ext This object represents the created currency curve

object from which several results and information

can be retrieved e.g. the blended curve (see below).

Discount function for the spread leg currency in the currency basis swap:

disc_func cb_curve_sprd_disc (date trade_date,

 Algorithmica Research AB / Magnus Nyström

Page | 34

instrument option(nullable) fx_spot,

curve option(nullable) fxswap_crv,

instr_class_name option(nullable) depo_class_fxbase,

instr_class_name option(nullable) depo_class_fxprice,

curve basis_crv,

number option(nullable) basis_first_fix_flat,

number option(nullable) basis_first_fix_sprd,

logical merge_crv,

logical prio_fxswap,

integer blend_buf_days,

disc_func df_disc_flat,

disc_func option(nullable) df_disc_sprd,

fwd_func f_fwd_flat,

fwd_func f_fwd_sprd,

string option(nullable) name,

interpolator option(nullable) disc_ip,

rate_type option(nullable) disc_ip_rt,

out swap_curve_bc_ext currb)

The only difference between cb_curve_sprd_disc(…) and cb_curve_flat_disc(…) is that the df_disc_sprd

is optional while df_disc_flat is required.

4.2. The swap_curve_bc_ext object

The swap_curve_bc_ext object represents a currency swap curve created from a currency basis swap
and contains the input data and several intermediate results as well as provides access to and calculates
the general disc_func object.

The member functions are:

Function Arguments Comment

string name() none Returns the name of the curve.

curve basis_curve() none Returns the currency basis curve.

number flt_freq_sprd() none Returns the forward rate tenor for
the spread leg in the currency basis
swap.

number flt_freq_flat() none Returns the forward rate tenor for
the flat leg in the currency basis

 Algorithmica Research AB / Magnus Nyström

Page | 35

swap.

day_count_method flt_dc_sprd() none Returns the daycount method for
the spread leg in the currency basis
swap.

day_count_method flt_dc_flat() none Returns the daycount method for
the flat leg in the currency basis
swap.

string ccy_sprd() none Returns the currency for the spread
leg in the currency basis swap.

string ccy_flat() none Returns the currency for the flat leg
in the currency basis swap.

fwd_func f_fwd_sprd () none Returns the fwd_func for the
spread leg in the currency basis
swap.

fwd_func f_fwd_flat() none Returns the fwd_func for the flat
leg in the currency basis swap.

disc_func disc_df_sprd () Returns the disc_func for the
spread leg in the currency basis
swap. Note that this is the input
disc_func and not the fx-implied
disc_func.

disc_func disc_df_flat () none Returns the disc_func for the flat
leg in the currency basis swap. Note
that this is the input disc_func and
not the fx-implied disc_func.

disc_func adj_disc_df_sprd interpolator disc_ip,
rate_type disc_ip_rt

Returns the fx-implied disc_func for
the spread leg in the currency basis
swap.

disc_func adj_disc_df_flat interpolator disc_ip,
rate_type disc_ip_rt

Returns the fx-implied disc_func for
the flat leg in the currency basis
swap.

4.3. Wrapper functions for currency fix-float swaps

An fx-implied discount function can be created with a single wrapper function call. There are two

versions, depending on which currency discount function should be calculated.

Discount function for the fixed leg currency in the currency fix-float swap:

disc_func cff_curve_fix_disc (date trade_date,

 Algorithmica Research AB / Magnus Nyström

Page | 36

instrument option(nullable) fx_spot,

curve option(nullable) fxswap_crv,

instr_class_name option(nullable) depo_class_fxbase,

instr_class_name option(nullable) depo_class_fxprice,

curve fixfloat_crv,

number option(nullable) flt_first_fix,

logical merge_crv,

logical prio_fxswap,

integer blend_buf_days,

disc_func option(nullable) fix_df_disc,

disc_func flt_df_disc,

fwd_func flt_fwd,

string option(nullable) name,

interpolator option(nullable) boot_ip,

rate_type option(nullable) boot_ip_rt,

out swap_curve_cff_ext currff)

Arguments and return values explained:

Return value Comment

disc_func The disc_func object represents a discount function. This object has many member

functions (see the Quantlab function browser).

Arguments Data type Comment

trade_date date Trade date.

fx_spot instrument The fx spot currency. Required only if an fx-swap curve is

used in the short end.

fxswap_crv curve The fx-swap curve. This curve is not required.

depo_class_fxbase instr_class_name Class name for Deposits in the base currency. Note that

base currency is related with the fx-swap curve.

depo_class_fxprice instr_class_name Class name for Deposits in the price currency.

fixflt_crv curve The currency fix-float swap curve.

flt_first_fix number The first floating rate fixing for the float leg in the

currency swap curve. If null, no fixing is used.

merge_crv logical All curve segments are merged into the curve.

prio_fxswap logical Indicates if the fx-swap instruments have first priority

when blending the curve.

blend_buf_days integer The minimum number of days between “corner”

instruments for the curve segments in the curve

 Algorithmica Research AB / Magnus Nyström

Page | 37

blending.

fix_df_disc disc_func The discount function for the fixed leg in the currency

swap curve. In the case where the fixed leg discount

function is the output this argument is optional. If it is

not null then the output will be a spread-adjusted

discount function. This may be useful if one would like to

preserve the curvature of an input discount function.

flt_df_disc disc_func The discount function for the float leg in the currency

swap curve.

flt_fwd fwd_func The forward rates of appropriate tenor for the float leg in

the currency swap curve.

name string An optional name of the blended currency curve.

boot_ip interpolator Interpolation model object. Available models includes:

1. ip_hagan_west(logical force_pos): Hagan/West

monotone convex spline, if force_pos = true, the

forward rates are enforced to be positive.

2. ip_hermite_4th_order() :

3. ip_hermite_akima():

4. ip_hermite_catmull_rom() :

5. ip_hermite_finite_diff ():

6. ip_hermite_fritsch_butland() :

7. ip_hermite_kruger():

8. ip_hermite_monotone():

9. ip_hermite_parabolic():

10. ip_linear(): linear interpolation

11. ip_spline(): cubic spline interpolation

12. ip_step(): step function interpolation.

The interpolator object is created from the above

constructors. Each constructor has several more

arguments (not shown) related to extrapolation and

Hyman filters. It is possible to define extrapolation

properties both in the front and end of the curve. It is

also possible to apply different types of Hyman filters(eg.

monotonicity) to all interpolators except linear and the

Hagan/West model. All interpolation models are local

except spline. A detailed discussion on these models is

beyond the scope of this document.

boot_ip_rt rate_type Interpolation rate types. Available choices are:

RT_CONT: Continuous compounding.

 Algorithmica Research AB / Magnus Nyström

Page | 38

RT_ON: Daily compounding.

RT_SIMPLE: Simple compounding.

RT_EFFECTIVE: Annual effective compounding.

RT_SEMI_ANNUAL: Semi-annual compounding.

RT_QUARTERLY: Quarterly compounding.

RT_MONTHLY: Monthly compounding.

RT_BANKDISC: Bank discount rate.

RT_LOGDF: Log of the discount function

Note: the Hagan/West model is only defined for

RT_CONT.

out Arguments Data type Comment

currff swap_curve_cff_ext This object represents the created currency curve

object from which several results and information

can be retrieved e.g. the blended curve (see below).

Discount function for the float leg currency in the currency fix-float swap:

disc_func cff_curve_flt_disc (date trade_date,

instrument option(nullable) fx_spot,

curve option(nullable) fxswap_crv,

instr_class_name option(nullable) depo_class_fxbase,

instr_class_name option(nullable) depo_class_fxprice,

curve fixflt_crv,

number option(nullable) flt_first_fix,

logical merge_crv,

logical prio_fxswap,

integer blend_buf_days,

disc_func fix_df_disc,

disc_func option(nullable) flt_df_disc,

fwd_func flt_fwd,

string option(nullable) name,

interpolator option(nullable) disc_ip,

rate_type option(nullable) disc_ip_rt,

out swap_curve_cff_ext currff)

 Algorithmica Research AB / Magnus Nyström

Page | 39

The only difference between cff_curve_flt_disc(…) and cff_curve_fix_disc(…) is that the flt_df_disc is

optional while fix_df_disc is required.

4.4. The swap_curve_cff_ext object

The swap_curve_cff_ext object represents a currency swap curve created from a currency fix-float swap
and contains the input data and several intermediate results as well as provides access to and calculates
the general disc_func object.

The member functions are:

Function Arguments Comment

string name() none Returns the name of the curve.

curve fixflt_curve() none Returns the currency fix-float swap
curve.

number fix_freq () none Returns the coupon frequency for
the fixed leg.

number flt_freq () none Returns the forward rate tenor for
the float leg.

day_count_method fix_dc() none Returns the daycount method for
the fixed leg.

day_count_method flt_dc () none Returns the daycount method for
the float leg.

string fix_ccy () none Returns the currency for the fixed
leg.

string flt_ccy() none Returns the currency for the float
leg.

fwd_func flt_fwd () none Returns the fwd_func for the float
leg.

disc_func flt_disc_df () Returns the disc_func for the float
leg. Note that this is the input
disc_func and not the fx-implied
disc_func.

disc_func fix_disc_df () none Returns the disc_func for the fixed
leg. Note that this is the input
disc_func and not the fx-implied
disc_func.

disc_func fix_adj_disc_df interpolator disc_ip,
rate_type disc_ip_rt

Returns the fx-implied disc_func for
the base leg in the currency basis
swap.

disc_func flt_adj_disc_df interpolator disc_ip,
rate_type disc_ip_rt

Returns the fx-implied disc_func for
the flat leg in the currency basis
swap.

 Algorithmica Research AB / Magnus Nyström

Page | 40

5. Creating a swap surface

The single currency swap curve can be represented as a surface where the extra dimension is the tenor

of the forward index rate. The discount function is assumed to be the lowest tenor and will anchor the

rate interpolation below the first forward tenor. Extrapolation is currently not done beyond the longest

tenor.

There are several wrapper functions for creating the swap surface depending on what instruments are

used and other assumptions. Here, the function which uses the FRA/IRS/Basis swap(2 swaps) is shown

and will represent the principles.

swap_curve_surface swap_surface_b2_create(

 date trade_date,

 disc_func df_disc,

 curve option(nullable) short_main_crv,

 curve option(nullable) fra_main_crv,

 curve option(nullable) swap_main_crv,

 vector(curve)) short_t_crv,

 vector(curve) fra_t_crv,

 vector(curve) basis_t_crv,

 curve_prio prio1,

 curve_prio prio2,

 string depo_class_name,

 string fra_main_class_name,

 vector(string) fra_t_class_name,

 synt_short_style synt,

 interpolator option(nullable) bs_ip,

 logical merge_fra,

 number blend_buf_days,

 vector(number) option(nullable) edfut_cvx_adj,

 logical x_pol_basis,

 number option(nullable) swap_first_fix)

The arguments that have been explained previously will not be discussed.

 Algorithmica Research AB / Magnus Nyström

Page | 41

Return value Comment

swap_curve_surface The swap_curve_surface object is an “interpolation”-object and contains the

discount function and all tenor forward functions.

Arguments Data type Comment

short_main_curve curve The main tenor curve for the short segment of the forward

curve.

fra_main_curve curve The main tenor curve for the FRA/Futures segment of the

forward curve. All FRAs must have the same tenor and the

same tenor as the main IRS floating leg.

swap_main_curve curve The main tenor curve for the IRS segment of the forward

curve. All swaps must have the same tenor of the floating

leg and this tenor must match all the FRA/Futures contract

main tenors.

short_t_curve curve The non-main tenor short curves.

fra_t_curve vector(curve) The non-main tenor FRA/Futures curve.

basis _t_curve vector(curve) The Basis swap curves. All Basis swaps must have one tenor

of the floating leg that matches the main tenor IRS curve.

The tenor of the other floating leg must match the

corresponding non-main tenor FRA/Futures curve. The

spreads must be a 2 swaps quotation.

 Algorithmica Research AB / Magnus Nyström

Page | 42

6. Curves

All curves needs to be setup to include only one type of instrument. The blending of different types of

instruments will be done at runtime and blending of instruments with different tenors will typically

generate an error (for forward curves).

A complete set of curves for a currency thus comprises of:

• Discounting curve e.g. OIS.

• IRS curve for the main floating leg tenor.

• FRA’s or Futures for the main tenor.

• Basis swap curves (or IRS curves) for other tenors.

• FRA’s or Futures for other tenors.

As an example, for EUR this would typically mean:

• Eonia is used for discounting.

6M tenor (main):

• IRS: Annual fixed vs. 6M EURIBOR; 1yr – 60yrs.

• FRA: 6M EURIBOR; 0x6, 6x12, 12x18, 18x24 and 1x7, 2x8, …

3M tenor:

• Basis swaps (quoted as either 1 swap or 2 swaps): 3M/6M; 1yr – 50 yrs.

• Money market futures: 3M EURIBOR (convexity adjusted)

• FRA: 3M EURIBOR; 0x3, 3x6, 6x9,… and 1x4, 2x5, …

1M tenor:

• Money market monthly IRS: 2M-12M.

• Basis swaps (quoted as either 1 swap or 2 swaps): 1M/6M; 1yr – 50 yrs.

 Algorithmica Research AB / Magnus Nyström

Page | 43

• FRA: 1M EURIBOR; 0x1

12M tenor:

• Basis swaps (quoted as either 1 swap or 2 swaps): 6M/12M; 1yr – 50 yrs.

• FRA: 12M EURIBOR; 12x24

As an example of typical a result, let us look at the EUR curves for 14-Mar-2012 (using ICAP prices
provided by Reuter).

In the graph below the OIS, 1M, 3M, 6M and 12M tenors are shown. The curves are created from:
OIS: EONIA swaps
1M: Money Market IRS and 1M/6M Basis swaps,
3M: 3M Futures and 3M/6M Basis swaps,
6M: 6M FRA and 6M IRS,
12M: 12M FRA and 6M/12M Basis swaps

In addition, for each forward tenor, synthetic Deposits and FRAs are created to fill up the short end
before the first instrument. The rates for the synthetic instruments are calculated from an interpolated
basis vs. the OIS curve.

In the graph below, only “exact fit”-models are used. The interpolation model for the OIS curve is the
Hagan/West forward monotone convex spline. The forward rate interpolation model is a hermite cubic
spline.

 Algorithmica Research AB / Magnus Nyström

Page | 44

 Algorithmica Research AB / Magnus Nyström

Page | 45

References

Adams, K. J., & Van Deventer, D. R. (1994). Fitting yield curves and forward rate curves with maximum
smoothness. The Journal of Fixed Income.
http://www.iijournals.com/doi/abs/10.3905/jfi.1994.408102

Andersen, L. (2007). Discount curve construction with tension splines. Review of Derivatives Research

10, Issue 3, 2007. http://www.springerlink.com/index/F7675413855KLM87.pdf

Forsgren, A. (1998). A note on maximum smoothness approximation of forward interest rates -
corrections to Adams-Deventer. Report TRITA-MAT-1998-OS3, Department of Mathematics, Royal
Institute of Technology. http://www.math.kth.se/~andersf/doc/smoothadd.ps

Hagan, P. S., & West, G. (2006). Interpolation methods for curve construction. Applied Mathematical
Finance, 13(2), 89–129.
http://www.tandfonline.com/doi/full/10.1080/13504860500396032#.Uadprp38LmE

Tanggaard C. (1997). Nonparametric smoothing of yield curves. Review of Quantitative Finance and
Accounting, 9, 251-267, 1997. http://www.math.ku.dk/~rolf/teaching/tanggaardRQFA.pdf

http://www.iijournals.com/doi/abs/10.3905/jfi.1994.408102
http://www.springerlink.com/index/F7675413855KLM87.pdf
http://www.math.kth.se/~andersf/doc/smoothadd.ps
http://www.tandfonline.com/doi/full/10.1080/13504860500396032%23.Uadprp38LmE
http://www.math.ku.dk/~rolf/teaching/tanggaardRQFA.pdf

