

 Heston Stochastic Volatility Model

Demo workspace walkthrough

Last update: 2021-03-02

© 2002-2021 Algorithmica Research AB. All rights reserved.

Table of Contents
The Heston Stochastic Volatility Model .. 2

The five parameters of the Heston Model .. 3

The role of the different parameters .. 3

𝑣0 .. 3

𝜃 .. 3

𝜌 .. 3

𝜅 .. 4

𝜎 .. 4

The Feller Condition .. 4

Workspace tab “Calibration of the Heston Model” .. 5

The Calibration Class ... 8

Workspace Tab “Heston Option Pricing” .. 10

The Option Pricing and Implied Volatility calculation functions ... 11

Workspace Tab “Heston Implied Volatility Smile” .. 13

Workspace Tab “Option Price Sensitivity to Heston Parameters” ... 14

Workspace Tab “Black Volatility Sensitivity to Heston Parameters” .. 15

Workspace Tab “Simulating Heston, one path” ... 16

The Simulation Class ... 16

Workspace Tab “Simulating Heston, ten paths”... 19

Workspace Tab “Simulated Vanilla Option Prices .. 20

Workspace Tab “Simulated Barrier Option Prices” .. 21

The Heston Stochastic Volatility Model
The Heston Stochastic volatility model was introduced by Steven Heston in 1993 in an attempt to

provide a more realistic model for assets than the well known Black-Scholes (BS) model.

Simply put, it replaces the constant volatility of the BS model by a stochastic volatility which is modelled

by a separate process.

The processes are given by

𝑑𝑆(𝑡)

𝑆(𝑡)
= 𝜇(𝑡)𝑑𝑡 + √𝑉(𝑡)𝑑𝑊1(𝑡)

𝑑𝑉(𝑡) = 𝜅(𝜃 − 𝑉(𝑡))𝑑𝑡 + 𝜎√𝑉(𝑡)𝑑𝑊2(𝑡),

where 𝑊1(𝑡) and 𝑊2(𝑡) are standard Brownian motions with instantaneous correlation given by

< 𝑑𝑊1, 𝑑𝑊2 > = 𝜌𝑑𝑡

and 𝜇(𝑡) is the drift term, typically the risk free rate (with any dividend yield subtracted).

The Heston model depends on five free parameters:

The five parameters of the Heston Model

𝑣0 = The initial value for the variance process V(t), 𝑣0 = 𝑉(0).

𝜃 = The long term mean for the variance process V(t).

𝜌 = The instantaneous correlation between the Brownian motions for the asset and variance process.

𝜅 = The mean reversion speed. How fast the variance process tends to its long term mean.

𝜎 = The volatility of the variance process. Often called vol-vol.

Those parameters have to be calibrated from available market data (in the form of Black volatilities for

different maturities and strikes).

The role of the different parameters

𝑣0
Controls the initial vertical position of the implied Black volatility smile. Larger value means larger initial

volatilities.

Allowed values: All positive values are theoretically allowed, even though values too close to zero is not

recommended. Typically this value is less than 1.

 𝜃
Controls the vertical position of the long term implied Black volatility smile. Larger value means larger

long term volatilities.

Allowed values: All positive values are theoretically allowed, even though values too close to zero is not

recommended. Typically this value is less than 1.

𝜌
Controls the skew of the smiles. The value 0 gives the most symmetrical smile. Negative and positive

values skews the smile in different directions.

Allowed values: All values (strictly) between -1 and 1 theoretically allowed, even though values too close

to -1 or 1 are not recommended. In real application this correlation is typically negative.

𝜅
A larger 𝜅 means a flatter smile since the variance process then tends to follow its mean more closely.

Allowed values: All positive values are theoretically allowed, even though values too close to zero is not

recommended. Also too large values of this parameter is not recommended. By large we here mean

around 10 or higher.

The reason is that the model in general becomes very insensitive to changes in this parameter for larger

values.

𝜎
Controls the kurtosis of the smile, or more simply put the “happiness” of the smile. A larger sigma gives

a more pronounced smile. A smaller sigma gives a flatter smile.

Allowed values: All positive values are theoretically allowed, even though values too close to zero is not

recommended. Typically this value is less than 3.

Remark:

We may note that the effect of the parameters 𝜅 and 𝜎 both overlap a bit. We can make the smile

flatter by either increasing 𝜅 or by decreasing 𝜎. This makes the calibration a bit numerically problematic

since a large 𝜅 combined with a large 𝜎 can produce a very similar looking smile compared to a small 𝜅

combined with a small 𝜎.

This is not a huge problem in practice though, since we are not really interested in the Heston

parameters as such, but rather how well the implied volatility smile fits the market data.

The Feller Condition
The variance process can hit zero if the so called Feller condition

2𝜅𝜃 > 𝜎2
is not satisfied. It is not an absorbing state though, so the process don’t stick to zero in that case.

The Feller condition is often fulfilled in real application, but sometimes it is not.

This condition is not a requirement in any way, but in general the simulation of the Heston model will

typically become less accurate if this condition is violated be a large margin.

Workspace tab “Calibration of the Heston Model”
This is a screenshot of the contents of the table in first tab in the Workspace. The purpose of this tab is

to demonstrate the calibration of the Heston model using some simplified input.

Remark: When using the workspace for the first time. Press recalc twice (after providing the input).

The calibrated Heston parameters are seen in the two columns on the far right.

Column 2 to 4 contains Black volatilities (expressed as absolute numbers, that is 0.45 for 45% volatility

and so on) used as input for the calibration. The upper part of the table of these three columns have

editable entries where the user can change the values.

The lower part of the same columns contains the calculated implied Black volatilities using the calibrated

parameters in the last column. The point of this is to provide a reference to compare with the upper part

of the table. The better match the better the calibrations.

Since the model only have five parameters to calibrate we can of course not expect a very good match

to market data here.

The input parameters expected from the user(except the Black volatilities) are on the left side of the

table:

Calibration Target :

This specifies an enum:

Simply put, in our calibration procedure we can choose to compare market and model option prices or

implied volatilities.

Calibration weighting :

This specifies an enum:

Internally, we use a least squares optimizer where we minimize the sum of square errors of model

option prices to market option prices (or volatilities if that option is chosen).

We can choose to put weights in front of these square terms. The choices are the following:

CUSTOM = The user can specify a vector of weights for each option freely when adding market data to

the calibration class. This is not used in this workspace though, so this option has been excluded here.

EQUAL_WEIGHTS = No weights/all weights equal to 1.

EQUAL_TOTAL_WEIGHT_PER_MATURITY = The sum of all weights for all terms belonging to options for

a specific maturity adds up to the same number for all maturities. This can be useful if we have a

different number of options for each maturity, but we want each maturity be equally important.

VEGA_WEIGHTS = Here we construct weights based on the option Vega. This is only used when we

compare option prices. Using these weights emulates the situation if we would compare volatilities with

equal weights instead.

This is typically the desired choice as it gives a very good fit generally.

Technical remark:

More precisely. For each option define

𝑣𝑖 = min (
1

𝑉𝑖
,
1000

𝐹𝑖
)

𝑤𝑖 =
𝑣𝑖

2

∑ 𝑣𝑗
2

𝑗

where the sum is over all options (numbered by j) and 𝑉𝑖 is the vega of option i and 𝐹𝑖 is the forward

value of the asset for the maturity of option i.

𝑤𝑖 is now the weight we use for option i.

Initial guess v0, Initial guess theta, Initial guess rho, Initial guess kappa, Initial guess sigma :

The optimizing procedure for the Heston model takes an initial guess for the Heston parameters as

starting point. It can happen that the calibration procedure “get lost” if this guess is chosen badly.

The above entries are the initial guesses for all the Heston variables.

The above starting values are quite typical and typically there is no need to change them.

A few loose guidelines for choosing “good” values are:

The initial v0, theta, kappa or sigma should not be choosen too close to 0 (the end point of their domain

of definition).

Rho must be between -1 and 1, but the starting guess should not be too close to the endpoints.

v0, theta, kappa or sigma should not be chosen too large as starting guess. v0, theta and sigma should

preferrably by chosen less than 1 and kappa less than say 5.

Time to maturity 1, Time to maturity 2, Time to maturity 3 :

The table has editable cells where the user can enter the Black volatilities used as input for the

calibration. We use three columns here, each one representing data for one maturity.

Those three parameters tells the calibration procedure which maturities the black volatilities of the

three columns represent.

Forward value 1, Forward value 2, Forward value 3 :

Here the forward values for the corresponding maturities are specified.

The Calibration Class
We now aim to describe the code used behind the scenes to create this tab and to calibrate the Heston

model in general.

Create an instance of the calibration class:

Now assume we have some market data at the maturity T=1. Assume the forward value for the

underlying to maturity T is F=100. Assume we have strikes at 80, 100 and 120 and the corresponding

Black volatilities 45%, 40%, 41%.

This we can add to our calibration class:

This is then repeated for all maturities T, where we have market data.

At least two maturities, and preferably more, should be used. This is needed to reflect the time behavior

of the model and its parameters.

We also have an alternative version of the above function. We can decide how much weight we should

put in front of each squared error term in the least squares procedure. In this way we can explicitly tell

the class that some option data are more important than others to match.

Take the same example as before, but want the options to be weighted by 0.5, 1 and 2 respectively.

Then we specify:

If such custom weights are used for one maturity it is required to use custom weights for all maturities.

When all data has been added we start the calibration we simply calling the function “calibrate”.

There are two versions of this. One which defaults all arguments of the other to suitable values.

The signatures of the functions are

The first two arguments are exactly those enums just described for the workspace. If custom weights

have been used to fill the class with market data, the input argument target must equal CUSTOM.

start_guess = [v0, theta, rho, kappa, sigma] is a vector containing the start guess of the Heston

parameters as described earlier, in the given order.

option_val_rel_tol is a relative error tolerance for the internal option price calculation procedure.

This is defaulted if not given.

alpha_search_abs_tol is another internal absolute error tolerance when searching for a dampening

parameter alpha used in the option pricing. This is defaulted and should probably be left that way.

So let us choose the initial guesses as v0=0.2, theta = 0.3, rho=0, kappa = 1 and sigma = 0.8. Let us

assume we want to compare option prices using vega weighting :

We get a Heston_params object as a result. This contains our calibrated parameters. We can ask for the

calibrated parameters by using its member functions :

Workspace Tab “Heston Option Pricing”
This is a screenshot of the second tab which is used to demonstrate option pricing in the Heston model.

There are three tables. One table for pricing a single option and calculate its implied Black volatility, one

table showing a grid of option prices for different strikes and maturities and one table showing a grid of

implied volatilities for different strikes and maturities.

The input to all of the tables is similar. We describe the single option table first. The input entries look

like this:

The first five entries are simply the parameters for the Heston model as described before.

The other entries are also self explanatory: We have the strike of the option, the forward value of the

underlying, the maturity of the option, the discount factor from maturity and finally we can choose to

price a call or put option.

The input for the other two tables is almost the same, but we specify three maturities and the

corresponding forward values at those maturities.

The Option Pricing and Implied Volatility calculation functions
Here we describe the functions used for this workspace tab.

Let us say we want to price a call option in the Heston model where v0=0.2, theta = 0.3, rho = -0.2,

kappa = 1, sigma = 0.7, strike = 100, forward_value = 95, maturity = 1 (year) and discount factor = 0.98.

Then we simply call the pricing function:

If we want to calculate the implied Black volatility we call the function doing that (using the same values

of the parameters as above):

Workspace Tab “Heston Implied Volatility Smile”

The purpose of this is to show the implied Black volatility smile given the five Heston parameters

together with the time to maturity and the forward value of the underlying.

The same code as in the last tab is used, so nothing new code-wise here.

Workspace Tab “Option Price Sensitivity to Heston Parameters”

This tab can give a lot of insight in how the different parameters of the Heston model influence the

option price. The first input entries in this table is the, by now, well known Heston parameters, the

forward value, time to maturity, discount factor and a flag is_call for switching between call and put

options.

The graph shows the option price as a function of a chosen input parameter. All input paramters will be

fixed, as given by the user, except one, which is the one we put on the x-axis.

So if we choose “Parameter on X-axis” as sigma. The graph shows how the option price depends on

sigma (The value of sigma given by the user in the “sigma” box is then ignored).

We can put all Heston parameters on the X-axis, but also the strike, forward value and time to maturity.

The entry “Number of grid intervals on X-axis” determines how many intervals and grid points we will

have on the X-axis. Typically around 100 gives a smooth enough graph.

Then we have two optional entries “X-axis min value” and “X-axis max value”.

Those specify the left and right endpoints in the X-axis. If not given they will be defaulted.

Those are useful if we want to zoom in on a particular part of interest of the graph.

Workspace Tab “Black Volatility Sensitivity to Heston Parameters”

The input to this table is identical to the table last tab: “Option Price Sensitivity to Heston Parameters”.

The only difference is that the graph shows Black implied volatility instead of option price.

Workspace Tab “Simulating Heston, one path”

This tab simulates the Heston model using one sample path and present the result in two graphs. The

first graph is the asset itself and the second the volatility process (square root of the variance process).

The input is the usual five Heston parameters, but also a constant risk free rate and dividend yield used

for the drift of the asset. We also choose a time to maturity here, meaning where the simulation will

stop.

We also need to provide a start value for the asset and the number of simulation time steps to use.

One may note the dependence of the asset on the volatility graphically. When the volatility graph goes

down, the asset tend to be less volatile, as expected.

The Simulation Class
Let us say we want to do a 1 year long simulation of an asset with initial value = 100 using Heston

parameters v0=0.2, theta = 0.3, rho = -0.2, kappa = 1, sigma = 0.7 using 1000 sample paths and 100 time

steps. Let us assume the risk free rate is 0.02 and the dividend yield is 0.01.

The code for creating a simulator and doing the simulation would then look like this.

Note that we needed to create a provide a random number generator to the simulation function.

The last argument QE in the constructor represents the internal simulation model to use. This last

argument is an enum describing different simulation models.

TV stands for “Transformed Volatility” scheme. It is a simple and very fast simulation scheme. However,

it seems somewhat biased in some situations.

QE stand for “Quadratic Exponential” Scheme. This is the recommended scheme which is the default.

This scheme performs well, especially when using so called martingale corrections.

The last argument could be skipped and safely be defaulted to the QE scheme.

The simulation class has a few member function to obtain the simulated samples:

asset_values() Returns the simulated values for the asset.

log_asset_values() Returns the logarithm of the simulated values for the asset.

volatility_values() Returns the simulated volatilites (square root of the variances).

variance_values() Returns the simulated variances (squared volatilities).

current_time() Returns where in time the simulation is at the moment.

The point in having the four getter functions instead of two for the asset and its variance process is to

avoid doing unnecessary exponentials, logarithms, square roots and squares if it is not necessary.

If we call the simulate function many times this can be costly.

Workspace Tab “Simulating Heston, ten paths”

This tab is identical to the previous tab, except that we simulate ten paths for both the asset and

volatility.

The point is to get a bit of understanding how much different paths differ from each other.

Workspace Tab “Simulated Vanilla Option Prices

The point of this tab is to price vanilla call/put options in the Heston model and to compare those to the

theoretical option prices.

The theoretical option prices are the correct prices in the model. So we can study the quality of the

simulation here.

The input is the same as in the “Simulated Heston, one path” and “Simulated Heston, ten paths” tabs.

The output is the simulated and theoretical option prices in the Heston model, both in numerical and in

the form of graphs.

The simulated option price is computed the usual Monte Carlo way by averaging the payoff over all

samples.

Workspace Tab “Simulated Barrier Option Prices”

The point of this tab is to show how the Heston simulation class can be used to price something slightly

more complicate, a barrier up-and-out call option with rebate.

This is an ordinary vanilla European call option, but with the extra feature that option expires and

becomes worthless if the simulated asset ever goes above the barrier level. If that happens a rebate is

paid (which can be 0).

The rebate can be paid either when the barrier is hit or at expiry.

The input here is the usual one, except for the obvious new entries where we can set the barrier, the

rebate and if it is paid on hit or expiry.

This is an example where we need to split the simulation interval in many sub steps and check if the

barrier has been hit in each of those steps.

Here there we have the obvious problem that the barrier might be have been hit between steps.

However, one can calculate that probability and adapt the calculations to that.

We don’t go into details of the math here.

Workspace Tab “Simulating Multi-Asset Heston”

The point of this tab is to illustrate the Multi-Asset Heston model in a simple example.

We do a simulation of three factors. First we have an asset in the domestic base market, let us say the

“SEK” market.

Then we add another “foreign” market, say the “USD” market. When doing so we simulate the exchange

rate for USD/SEK in the Heston model.

Then we add an asset on foreign market and simulate this together with the rest.

And finally we also can add correlations between the simulated assets and exchange rate.

The input is of the same type as for the single asset Heston, but repeated, except that we now can give

the correlations between the factors too.

So let’s continue to describe the usage of the code behind this.

The multi-asset Heston simulation class.
The Multi-asset Heston simulation class has a constructor that looks like this

Here we create the simulator object and also sets up the domestic market for the simulation.

n_paths is the number of sample paths to use in the simuation.

domestic_currency is the currency of the domestic market, like “SEK”. It is just a label and can be

choosen freely, so it does not have to match any existing currency.

domestic_yield_curve is the risk free yield curve on the domestic market represented as a disc_func

object.

Example:

To create a Multi-asset Heston simulator with “SEK” as domestic market and currency, using 1000

sample paths and using a risk free domestic yield curve with nodes at 1,2 and 3 year with yields 0.01

(1%), 0.011 (1.1%) and 0.006 (0.6%), we would write

The interpolator object tells us that we should use linear interpolation and constant extrapolation

(derivatives 0) before the first point and after the last point.

Let us now add an asset to the given domestic market. To do this we use the member function with

signature

Example:

We call the asset “TELIA” and its currency should be “SEK”. We choose/construct a dividend yield curve

the same way we construct a yield curve. This is not mandatory, though.

We need to provide the assets starting value, which we choose to be 100 SEK and also the five Heston

model parameters, which we choose a bit arbitrary in this example.

To do all this, we write:

So far so good. We can, so far, only add assets to the domestic market, since we have not introduced

any foreign markets yet.

Let us now assume we want to add the “USD” market/currency. This can be done in several ways. We

have three different ways of adding a foreign market:

1. We can choose to simulate the exchange rate to USD in SEK using a Heston simulation. Then we need

to provide the Heston parameters.

2. We can also choose not to simulate the exchange rate, since we might not have any use for it. Then it

is assumed that the exchange rate is modelled using a standard Black-Scholes model.

Even if the process is not simulated, its volatility and correlations to the assets on the same foreign

market are needed to calculate the so called quanto-adjustments for the drift terms of the foreign

assets.

3. Alternative 3. Is a lazy version of alternative 2, but here we don’t even require the volatility of the

exchange rate. This is then assumed to be zero, which will make the quanto adjustments zero as well.

Since the quanto-adjustments typically are small compared to the other terms, ignoring them will not

have a huge effect on the simulation.

The three member functions to use in all those cases have signatures

The input is pretty straightforward. We need a label/currency for the market, a given risk free yield

curve for the market. If we choose to simulate the exchange rate, we need an initial value and the

Heston parameters.

So adding a “USD” foreign market with the “USD” exchange rate simulated using Heston (using some

arbitrary data) we would write

Let us finally assume we want to add an asset to the foreign “USD” market. Note that the market must

have been added before the asset can be added. This is done using the same function to add assets to

the domestic market.

Example:

So we now have three simulated factors in our simulator: The domestic asset “TELIA”, the foreign asset

“TESLA” and the exchange rate “USD” (in SEK).

We can choose to add correlations (for the log returns) between any of those. This can be done using

the member function with signature

Example:

When this is done the simulator is ready to start simulating (unless we want to add more factors).

This we do using the simulate member function with signature

We need to give the length of the simulation (in years), the number of time steps to use, a random

number generator and lastly an optional technical parameter which tells the simulator to do a so call

martingale correction or not (this is a method to remove model bias due to too large time steps).

When we want to retrieve values from the simulator, we can use the getter functions

We have separated getters for the simulated exchange rates and the assets for clarity.

