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The basic Heston Stochastic Volatility Model 
This section is a short repetition of the basic Heston Stochastic volatility model. 

More details can be found in the document “Heston Stochastic Volatility Model” describing that model 

and the demo workspace for that model. 

 

The Heston Stochastic volatility model was introduced by Steven Heston in 1993 in an attempt to 

provide a more realistic model for assets than the well known Black-Scholes (BS) model. 

Simply put, it replaces the constant volatility of the BS model by a stochastic volatility which is modelled 

by a separate process.  

The processes are given by 

𝑑𝑆(𝑡)

𝑆(𝑡)
= 𝜇(𝑡)𝑑𝑡 + √𝑉(𝑡)𝑑𝑊1(𝑡) 

𝑑𝑉(𝑡) =  𝜅(𝜃 − 𝑉(𝑡))𝑑𝑡 +  𝜎√𝑉(𝑡)𝑑𝑊2(𝑡), 



where 𝑊1(𝑡) and 𝑊2(𝑡) are standard Brownian motions with instantaneous correlation given by 

< 𝑑𝑊1, 𝑑𝑊2 > =  𝜌𝑑𝑡 

and 𝜇(𝑡) is the drift term, typically the risk free rate (with any dividend yield subtracted). 

The Heston model depends on five free parameters: 

 

The five parameters of the Heston Model 

𝑣0 = The initial value for the variance process V(t), 𝑣0 = 𝑉(0). 

𝜃 = The long term mean for the variance process V(t). 

𝜌 = The instantaneous correlation between the Brownian motions for the asset and variance process. 

𝜅 = The mean reversion speed. How fast the variance process tends to its long term mean. 

𝜎 = The volatility of the variance process. Often called vol-vol. 

Those parameters have to be calibrated from available market data (in the form of Black volatilities for 

different maturities and strikes). 

 

The Local Volatility Model 
 

The local volatility model is a generalization of the standard Black-Scholes model with constant volatility 

𝜎: 

𝑑𝑆(𝑡)

𝑆(𝑡)
= 𝜇(𝑡)𝑑𝑡 + 𝜎 𝑑𝑊(𝑡),



where the constant volatility is replaced be a so called local volatility function, 𝜎𝐿𝑉(𝑡, 𝑆), depending 

on both time and the current level of the asset: 

𝑑𝑆(𝑡)

𝑆(𝑡)
= 𝜇(𝑡)𝑑𝑡 + 𝜎𝐿𝑉(𝑡, 𝑆) 𝑑𝑊(𝑡) 

This model has the huge advantage of replicating market prices exactly (if the local volatility function has 

been calibrated correctly).  

However, despite this, this model should not be used in practice for pricing something more exotic path 

dependent options. The reason for this is that the stochastic behavior of this model is not realistic. The 

main issue is that the local volatility function is calibrated at market data at time zero and remains fixed 

no matter how the process develops.  

So in general the basic Heston model is a much better choice for pricing of exotic options, even though 

the fit to market vanilla prices is much worse than the local volatility model. 

 

I would be nice if we could somehow combine the good aspects of both the Local volatility model and 

the Heston model.  This is the purpose of the so called Heston Stochastic local Volatility (SLV) model we 

will describe in the next section.  

The Heston Stochastic Local Volatility (SLV) Model 
The Heston SLV model is given by the same two processes as the standard Heston model, but where we 

have an extra volatility factor 𝜎(𝑡, 𝑆) for the asset term: 

𝑑𝑆(𝑡)

𝑆(𝑡)
= 𝜇(𝑡)𝑑𝑡 + 𝜎(𝑡, 𝑆)√𝑉(𝑡)𝑑𝑊1(𝑡) 

𝑑𝑉(𝑡) =  𝜅(𝜃 − 𝑉(𝑡))𝑑𝑡 +  𝜎√𝑉(𝑡)𝑑𝑊2(𝑡), 

where 𝑊1(𝑡) and 𝑊2(𝑡) are standard Brownian motions with instantaneous correlation given by 

< 𝑑𝑊1, 𝑑𝑊2 > =  𝜌𝑑𝑡 

and 𝜇(𝑡) is the drift term, typically the risk free rate (with any dividend yield subtracted). 

So the volatility term for the asset is a deterministic local volatility type function 𝜎(𝑡, 𝑆) multiplied by 

the stochastic volatility factor √𝑉(𝑡). 

The we need to be able to compute the function 𝜎(𝑡, 𝑆). We will not go into details in the rather 

involved derivations of this, but one can show that we need to have: 

                                   𝜎2(𝑡, 𝐾) =  
𝜎𝐿𝑉

2 (𝑡,𝐾)

𝐸[𝑉(𝑡)|𝑆(𝑡)=𝐾]
 . 



The nominator is the local volatility function squared. The denominator is an expected value of the 

variance given the value of the underlying. This is not possible to calculate in any explicit analytic form. 

In our implementation we use a method of calculating the empirical expected value by sorting the range 

of S(t) in a number of “bins” where the value of S(t) is approximately constant in each bin. 

Then we interpolate the midpoints of those bins either using linear interpolation or splines. That 

function is then out approximation for the expected value above. 

Then we of course have the problem of choosing an appropriate number of bins. The number of sample 

paths should be much larger than the number of bins so that each bin contains a decent number of 

samples. 

Empirically around 80 bins seems like a good choice if the number of paths is like 100K. 



 

 

Workspace tab “Calibration of Volatility Surface and Black Local Vol 

simulation” 
This is a screenshot of the contents of the first tab in the Workspace. The purpose of this tab is to 

demonstrate the calibration of the volatility surface (which later will be used to get the local volatility) 

using some simplified input. This tab also contains a table where we can simulate the Local volatility 

model using the local volatility obtained from the calibrated volatility surface. 

 

Remark: When using the workspace for the first time. Press recalc twice (after providing the input). 

 

The errors (times 10^10) of the volatility surface calibration are seen in the two columns on the far right. 

Column 2 to 4 contains Black volatilities (expressed as absolute numbers, that is 0.45 for 45% volatility 

and so on) used as input for the calibration.  

The input parameters for the volatility calibration expected from the user(except the Black volatilities) 

are on the left side of the upper table: 



 

 

Calibration Target : 

This specifies an enum: 

 

Simply put, in our calibration procedure we can choose to compare market and model option prices or 

implied volatilities.  

Calibration weighting :  

This specifies an enum: 

 

Internally, we use a least squares optimizer where we minimize the sum of square errors of model 

option prices to market option prices (or volatilities if that option is chosen). 

We can choose to put weights in front of these square terms. The choices are the following: 

CUSTOM = The user can specify a vector of weights for each option freely when adding market data to 

the calibration class. This is not used in this workspace though, so this option has been excluded here. 



 

EQUAL_WEIGHTS = No weights/all weights equal to 1. 

EQUAL_TOTAL_WEIGHT_PER_MATURITY = The sum of all weights for all terms belonging to options for 

a specific maturity adds up to the same number for all maturities. This can be useful if we have a 

different number of options for each maturity, but we want each maturity be equally important. 

 

VEGA_WEIGHTS = Here we construct weights based on the option Vega. This is only used when we 

compare option prices. Using these weights emulates the situation if we would compare volatilities with 

equal weights instead. 

This is typically the desired choice as it gives a very good fit generally. 

Technical remark: 

More precisely. For each option define 

𝑣𝑖 = min (
1

𝑉𝑖
,
1000

𝐹𝑖
) 

𝑤𝑖 =
𝑣𝑖

2

∑ 𝑣𝑗
2

𝑗

 

where the sum is over all options (numbered by j) and 𝑉𝑖 is the vega of option i and 𝐹𝑖 is the forward 

value of the asset for the maturity of option i. 

𝑤𝑖 is now the weight we use for option i. 

 

Time to maturity 1, Time to maturity 2, Time to maturity 3 : 

The table has editable cells where the user can enter the Black volatilities used as input for the 

calibration. We use three columns here, each one representing data for one maturity. 

Those three parameters tells the calibration procedure which maturities the black volatilities of the 

three columns represent. 

Asset start  value, Forward value 1, Forward value 2, Forward value 3 : 

Here the forward values for the corresponding maturities are specified (and the asset start value at time 

zero). 

Number of strike axis intervals 

We calibrate the volatility surface using a finite difference grid in the time and strike direction. This is 

how many grid intervals we use in the spatial strike direction. Do not use to few. 3000 or 4000 seems to 

be a nice choice. 

Max allowed total error 

This concerns the least squares error norm for the given maturity. The norm is the square root of the 

squared differences between model and market values. If the tolerance here is breached, an error will 

be thrown. 

 



Then we have the table 

 

This table can only be used after the volatility surface has been successfully calibrated using the 

previously mentioned table. The purpose of this is to inspect the values we get from the calibrated 

volatility surface. 

This is simple enough: In the first drop down menu, choose what kind of data we want from the surface. 

Choose between call option values, put option values, implied Black volatility or local volatility. 

The time to maturity and strikes is precisely that, choose the maturity and strike to inspect. 

Of special interest is of course the maturities and strikes we used to calibrate the surface. We should get 

back our used market values to high precision. 

 

The local volatility surface we get is very irregular and has not been smoothed in any way. Typically 

there will be discontinuities when we pass the market maturities. This is not as bad as it might seem. 

The purpose of the local volatilities is to “add up” together in the correct way to match the implied 

volatilities. 

Then we have the Local vol model simulation table: 

 

Like the previous table, this can only be used after a volatility surface has been calibrated using the first 

table. The input is rather self explanatory: We give the length of the simulation as the time to maturity. 

We choose the number of simulation steps and the number of sample paths. 

Monte Carlo simulations converge poorly so one has to use many paths to converge. Too few steps and 



too few sample paths gives us two different types of errors. Too few steps gives a discretization error 

resulting in bias that can’t be overcome no matter how many sample paths we use. 

Too few sample path causes problem with too few samples to convergence in the Central limit theorem 

that is the basis of Monte Carlo. 

So one should balance the two parameters in a reasonable way. Folk lore says that the number of steps 

should be proportional to the square root of the number of sample paths for a good balance. 

 

The output is just the market and simulated Black vol and option prices compared. 

 

The Volatility surface data Class  
Create an instance of the volatility data surface class. To do this we need a forward curve describing the 

forward values of the asset for each maturity, including the start value of the asset. 

Here maturity_0, maturity_1, and maturity_2 are the time to maturities given by the user and F_0, F_1 

and F_2 the corresponding forward values. We create an interpolation object which will use linear 

interpolation (Alternatively there is a constructor taking one vector of maturities and one vector of 

forward values. Linear interpolation will then be used internally in the class). 

 

We then construct three strike vectors, one for each maturity, based on percentages of the forward 

values. Then we add the strikes and black maturities for each maturity to the class: 

 

Then we call the calibration function that will we used to calibrate the volatility surface. This function 

has signature: 



 

 

The first two argument was already described above. The arguments min_strike_as_fraction_of_fwd 

and max_strike_as_fraction_of_fwd  tells the calibration the outer limits of the strike grid expressed as 

a fraction of the forward value.  The forward value used by the grid internally is always 1, which then will 

be rescaled in a clever way. So if for example min_strike_as_fraction_of_fwd = 0.5, the minimum value  

in the internal grid will be 0.5*1 = 0.5. 

Empirical studies shows that it is a very bad idea to choose lower and upper limits too tight to the 

market data. The technical reason for this is that the finite difference grid has boundary conditions 

saying that the second derivative of the call price there should be zero. This condition becomes a bit 

incompatible with the rest of the grid depending on the market data. 

Therefore the min_strike_as_fraction_of_fwd should be close to 0, say 0.01 and 

max_strike_as_fraction_of_fwd  should be large, like say 5. 

 

The tol_l2_error is the maximum error norm allowed, mentioned earlier. 

The last variable is a technical one deciding  if we should use exact or numerical derivatives in the 

calibration. Both choices should give very similar results. 

 

The function returns a kind of statistics object that can be ignored, but contains some good debug data 

for the calibration. 



Workspace Tab “Graphical display of Volatility Surface data” 

 

This tab is used to graphically display the volatility surface data. We choose the time to maturity to 

inspect, what kind of data to inspect (call option prices, put option prices, implied volatility or local 

volatility), the number of intervals to use on the x-axis, the min and max value on the x-axis expressed as 

a percentage of the forward value (so 20 represents 20% of the forward value) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Workspace Tab “Combined calibration of Heston and Volatility surface” 
The purpose of this tab is to calibrate both the Heston model and the volatility surface data class based 

on the data given here. NOTE: The results of this tab and table are used in the tabs below. Running this 

table is a requirement for the tabs below. 

The entries in the upper part of the table, are modifiable, representing market black volatilities for 

different strikes and maturities. In the right columns we get the calibrated Heston parameters and the 

numerical errors for the volatility surface calibration.  

The input to the left should be familiar by now:

 



We choose the calibration target and weighting for the Heston and the volatility surface calibration, the 

initial guesses for the parameters in the Heston model, market maturities, market forward values 

(including the asset start value), the number of grid intervals to use on the strike axis for the volatility 

surface, and the maximal error norm allowed on for the vol calibration. 

 

We use five different maturities to get slightly more realistic input data than the three maturities we 

used before. 

 



Workspace Tab “Heston SLV simulation of vanilla Options” 
This is the main tab for simulation of the Heston Stochastic Local Volatility (SLV) model. This tab requires 

that a Heston model and a volatility surface has been calibrated in the previous tab. 

We don’t need much input data here since most of the input are retrieved from the calibrated Heston 

model and the calibrated volatility surface : 

 

 

We need to provide a time to maturity telling the simulate how far to simulate (in years). 

We need to provide the simulator with the number of simulation steps and the number of sample paths. 

We also need a more technical parameter for the specific Heston SLV model we use, the number of bins 

used when computing the empirical expected value mentioned earlier.  80 seems to be a reasonable 

choice here.  

We then produce a number of columns to see how well the simulation performs, both compared to 

ordinary Heston model and compared to market data. 

1. We have the Black volatility from market used as input. The closer we are to this, the better 

2. Then we have Black volatility implied theoretically by the Heston model parameters. This is the 

benchmark for a pure Heston simulation. A perfect simulation would get a perfect match to 

these values.  

3. Then we have the Black volatilities for the Heston SLV simulation. Those should, in general, be 

much closer to the market volatilities compared to those theoretical pure Heston volatilities 

mentioned in 2, indicating that the Heston SLV in general is superior to the standard Heston. 

This is an example on what we get using the input above: (running it again will give different output 

due to different seed) 



 

Then we have the corresponding three columns for the option prices. 

Then we have a graph below the table displaying the option price graphs for the three cases 

mentioned (market vs pure Heston theoretical prices, vs Simulated Heston SLV prices). 

The Heston SLV simulation class 
The constructor for the Heston SLV class looks like this 

 

The first argument is the number of sample paths. The following five arguments are the standard Heston 

parameters, v0, theta, rho, kappa and sigma (just renamed a bit differently here).  

The last argument should be an instance of the calibrated volatility surface class. Note that a forward 

curve for the underlying is given implicitly by that surface class. 

To simulate we call one of the simulation member functions: 

 

The difference in those two lies in that one of them use the forward curve given by the volatility surface 

while the other one uses an external user given curve. 

Otherwise most input arguments are pretty straightforward: First we have the simulation length in 

years. Then we have the number of simulation steps in the given period. Then we have the number of 



bins used to calculate the internal expectation mentioned earlier. Then the optional forward curve, 

followed by the random number generator and the choice of interpolation techniques when 

interpolating the bins mentioned. 

The class also have a few getters: 

 

Gives the simulated asset values, the log asset values, the volatility values (square root of variance 

values) and variance values. And lastly a function giving how far in time the simulation has simulated at 

the moment (Not any real clock time, but as a measurement of the time axis in the simulation). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Workspace Tab “Heston SLV Implied Volatility Smile” 
This is a tab that requires the Heston Simulation table to be run before the graph can be shown. 

It shows the implied volatility smile for the Heston SLV simulation and compare it to the market smile 

and the pure Heston theoretically implied smile. Typically the market and Heston SLV smile are very 

close and the pure Heston smile is a bit off and more like a smooth average.  

This picture is typical: 



Workspace tab “Heston SLV Barrier Option pricing” 
 

The point of this tab is to show how the Heston SLV simulation class can be used to price something 

slightly more complicate, a barrier up-and-out call option with rebate. 

This is an ordinary vanilla European call option, but with the extra feature that option expires and 

becomes worthless if the simulated asset ever goes above the barrier level. If that happens a rebate is 

paid (which can be 0). 

The rebate can be paid either when the barrier is hit or at expiry. 

The input here is the usual one, except for the obvious new entries where we can set the barrier, the 

rebate and if it is paid on hit or expiry. 

 

This is an example where we need to split the simulation interval in many sub steps and check if the 

barrier has been hit in each of those steps.  

Here there we have the obvious problem that the barrier might be have been hit between steps. 

However, one can calculate that probability and adapt the calculations to that. 

We don’t go into details of the math here. 

 

We get a result table showing the option prices for different maturities: 



Workspace Tab “Simulating Heston, ten paths” 

 

This tab is identical to the previous tab, except that we simulate ten paths for both the asset and 

volatility.  

The point is to get a bit of understanding how much different paths differ from each other. 

 



Workspace Tab “Simulated Vanilla Option Prices 

 

The point of this tab is to price vanilla call/put options in the Heston model and to compare those to the 

theoretical option prices.  

The theoretical option prices are the correct prices in the model. So we can study the quality of the 

simulation here.  

The input is the same as in the “Simulated Heston, one path” and “Simulated Heston, ten paths” tabs. 

The output is the simulated and theoretical option prices in the Heston model, both in numerical and in 

the form of graphs. 

 

The simulated option price is computed the usual Monte Carlo way by averaging the payoff over all 

samples. 



Workspace Tab “Simulated Barrier Option Prices” 

 

The point of this tab is to show how the Heston simulation class can be used to price something slightly 

more complicate, a barrier up-and-out call option with rebate. 

This is an ordinary vanilla European call option, but with the extra feature that option expires and 

becomes worthless if the simulated asset ever goes above the barrier level. If that happens a rebate is 

paid (which can be 0). 

The rebate can be paid either when the barrier is hit or at expiry. 

The input here is the usual one, except for the obvious new entries where we can set the barrier, the 

rebate and if it is paid on hit or expiry. 

 

This is an example where we need to split the simulation interval in many substeps and check if the 

barrier has been hit in each of those steps.  

Here there we have the obvious problem that the barrier might be have been hit between steps. 

However, one can calculate that probability and adapt the calculations to that. 

We don’t go into details of the math here. 

 

 


