Algorithmica
Research AB

Quantlab 3.1

User’s manual

Last update: 2023-09-21 (version 3.1.4044)
© 2012-2023 Algorithmica Research AB. All rights reserved.

Algorithmica Research AB reserves the right to make
changes to the information contained herein without
prior notice.

No part of this document may be reproduced, copied,
published, transmitted, or sold in any form or by any
means without the expressed written permission of
Algorithmica Research AB.

Quantlab® and Algorithmica are trademarks or registered
trademarks of Algorithmica Research AB in Sweden and
other countries. Other product or company names
mentioned herein may be the trademarks of their
respective owners.

Page 2

1

11 oo 7 o 1 1o T N 7
1.1 What is the Quantlab system?ccccoiiiiiiiiiiiiiiiiiiii e sesssssssennses 7
1.2 Quantlab on-line function Browserccoeeeeiiiiiiiiiiiinrciniir e 8
1.3 Contents of this dOCUMENtccceeiiiiiiiiiiiiiiiiiiiirerrrrrerrrrererrr e 8

Development @NVIFONMENLeeeeeneeeeeeneeereeeeerseenssereennssesssnsssesssnssssssrnsssssssnsssssssasssnsenn 9
2.1 Starting and quitting QuaNtlabc... i e e nanas 9

2.1.1 Starting QUAaNTIAD ..coc.eeeeeeeee e e e 9

2 0 A O (¥ T= @ (U [1 - o F TS 9
2.2 QUANIAD WOIKSPACEiieeeeiiiiiiceiieiecerreneeeereranessennneseenassessennsssseensssssesnnsssnesnnssnnenns 10
2.3 L1V Le T4 (Y - ol I o o] £y 11

2.3.1 WOTKSPACE DIOWSENeiii ittt e et e e e etee e e e et ae e e e abae e e eenbaee e eeabaeeeenarenas 11

2 T O 1 F- o T= g D 1LY [o T<T ol o 11 o] USRS 11

2.3.3 FUNCHION DrOWSEN ... ittt ettt st sttt b e sbee st e emneeneean 13

2.3.4 Real time qUOLES DIrOWSETcii i e e e 14

2.3.5 Messages - warnings and run-time rrorS.....cccccueeeieciiieeiiieee e critee e ceiee e eereee e sbee e e e e 15

D TN ST o o =4 Ty 11 PR 15
2.4 Setting preferences (TOOIS)ciuireeriiiiiiiiiiiirrecierrrerrneees s s e sersnesssesessseseesnassssnssssenns 16

DO R D - Y - | o - 1= o] o 14 o 13 PSSR 16

2,42 INTAD GENEIAL: i 16

243 INtab EXEENAEA . ..o e 17

D [I - | o 1Y T YT Y PSSR 17

245 INTAD TabIer .o 17

2.4.6 Intab Edit (for the expression editor):cccecuiieeeciiee e 17

Programming in QuUantlab using QIANGueeuueeeeeeeeeeeeeneerrreeneesseeensesssennsesssnnssssssnnnsens 18
3.1 3T 0T LT 1 o T o N 18
3.2 A Simple eXample......iiiir e s s s e e s e n e sensesensasennssenannan 18
3.3 LGV ATV 0T (o N LT OIS 19
34 03T o) o N 21

3.4.1 Standard function definitionc.ccooiiiiiiiiii 21

3.4.2 Compact function definitioN..........coocuiiiiiiiiie e 22

3.4.3 INStAaNCES Of fUNCLIONS. ..couiiiiiieee et 22

R A VT ot d o] g I o = [=] 4 L) (=] R 22

I 01|11 Y -8 (] o Tot 4 o Yo PSS 23

3.4.6 FUNCHION POINTOIS. i e e e e e e e e e e e e s e e e e e e e e e e e s e s e e eeeeseeeanaasananns 24
3.5 Local and global variables..........coceeeiiiiieiiiirerccrrecr e rreee e rene e e s e e e e e nanas 25

3.6 (0T 0T =T - 1 0 Y 25

3.7 [F=) = T 0« N 26
K R - - [ol n Y/ o 1T PSP P PP PPPTPROPIRE 26
3.7.2 Object types and member fuNCLIONSccvvviiiiiiiicc e 27
3.7.3 Creating NEW ClasSeS.....cii i cciiee e ccttee ettt e e e ette e e etee e e e etae e e eeabaee s eentaeeseeabaeeeenaneeas 28
3.7.4 Example of classes and OPEratorsccccccuveeeeciiee e et e e e e 31
R T Y/ o TN o T 0 1= S T TP TP TP TP 32
3.7.6 DefiNition Of tYPES oot et 32
R A A =14 [V 4 T V] o 1T U T U T U U TSP 33
3.7.8 Declaring your OWN ENUM TYPES...cccccuiieeiiiieeeeeiteeeeetteeeesteeeeeebeeeeesbeeeeessseeeeesnsesesenssenas 33
3.7.9 VeCtors and MatriCeScouiiiiiiiieieeieettest ettt ettt ettt et be e b e b e saee e e eneeas 34
3.7.10 Y= =TT PO P PP PP OPPPPPOPRPPOR 36

3.8 FIOW CONEIOL....uueiiiii s 39
I 70 R | A= (Y ST o T [Lo ALY o 1] [39
3220 A I (V- oY gl Uo Yo T o T PP 39
3.8.3 The sWitCh StatemMeNT ...ccouiiiiiii it 41
3.8.4 Error handling: Try and CatChooiiiiiiiiie e e 41

3.9 L0704 0 =T) N 43

3,10 DEDBUBEING...cccuuiiiieeiiiiieicitrieee it treeese s renesesrenessssenessssranesssssenesssssenesssssenssssssannnns 44
WEItiNG lIBIArY fil€Seeeenneeeeeereiieeiieiiiiiieiiiiisesesnisesesnnsiesssnsssssssnsssssssnsssssssnssssssnasssssens 45

4.1 Creating library fUNCLIONSccceueiiiiiiiiiricrrcrrr e rene e s s e s e s n e s e seens 45

4.2 Writing overloaded funCtionsccceeiiiiieiiiiiiiieiiiccrrrcrrr e eese s e snas e seens 45

4.3 Adding member functions to object classes.........ccccceeiiiiieiiiiiiiiiiiicn e, 45
4.3.1 Adding a valuation method to an inStrumMentcccvireieiiiee e 45
4.3.2 Adding a quote field method to an iNStrumMent..........cccueeeeeciiieicciiee e 46
USing the COM IiNTEIFOCE..............eeeeeeeeeereeeeeeereeeeeerreeeieesseeaeesssnnnssssensssssssnsssssssnsssssssnsssssnnnns 47
Using the Inter-Quantlab Communication Server - IQCc..eeeeeeeeereeireencreenisrenisseosesnnnns 48

6.1 Step-by-step installation of the IQC on the serverc.cuucciieeeiiiieeccceeeeceeeeeeeeeeees 48

6.2 Creating a connection to the 1QC server from the Quantlab client.............ccccccceeeannennnee. 49

6.3 Example of creating a chat room using IQCccccuuiiiiieeiiiiieceiereeeeeereeeeeerenaneeesennnes 50

6.4 Example of feeding some market-maker corp spreads..........ccceeeerreencirreeneesneceneeenennnn. 52
Output - tables ANd GraPRICS...........eeeueeeeneeeeeirreniirieiereiiiriiiireeisresisseesesesssssasessessssesssssssssnnnss 54

7.1 General purpose table........ccciiiiiiiiiiiirr e e s r e s e n e sensesennans 54
7.1.1 Attaching an expression t0 a tableccocciiiiieiii e 54
7.1.2 Table options and formMatting.......cccccceeiiiiiiie e 56
7.1.3 Vector parameters in general tables........ccoceiiciieii i 57

Page 4

7.1.4

7.2
7.2.1
7.2.2
7.2.3

7.3
7.3.1
7.3.2
7.33
7.3.4
7.3.5
7.3.6
7.3.7
7.3.8
7.3.9

7.4
7.4.1
7.4.2
743
7.4.4
7.4.5
7.4.6
7.4.7
7.4.8

7.5
7.5.1
7.5.2
7.5.3
7.5.4
Case

8.1

8.2

8.3

8.4

8.5

8.6

Automatic texXt fOrmMatting. ... 57
The instrument table........cooviiiiieiiiiiiiii e 57
A standard instrument tableoooiiiiiii e 58
Formatting the instrument table........ccueiiiiiiii e 59
Creating instrument tables using an instrument vector functionccccceeevveeeeiineenn. 60
The graph WIiNAOW.......ccceeeiiiiieicirii e e s reee e s sena s s e sass s s enasssssenassssrenansssnennnes 60
An example of a time Series raphooocier i e 61
An example of how to merge parameters to common controls.........cccceecveeeeeiveeeennnen. 61
Using the graph mode t00lDaroouiiii e 64
Graph formMatting OPtIONS.....cuiiii e e e et e e e b e e e eearaeeeeas 66
Yo=Y = o =4 =T o] RSP 68
Plots using matrices or series(vector(NUMDBEr))cocciiiiiiiiiie e 69
(0o] (V10 Y =4 =T o] o - 69
Bar Charts (Ni-10 €TC) coouviiieieieee e et e et e e e e e e e e rae e e e enes 69
Creating [aDEIS ..cei e e e e e e nraeeeeas 70
Handling Parameters.......ccccieeiiieciieiiteiireeereaneeteneereserenserensessnssssasssssssessnssssnsesenssenes 71
Simple Parameter CONTIOISoiuuiii i e e e ree e e areeas 71
The INSErUMENT CONTIOL....c.iiiiieiieee et 72
THE CUIVE CONTIOL....iiiiiiiiicee et st sree s e 72
Creating common controls using Parameters Optionscccceeevcvieeesiciieeeecivee e, 72
B o3 o =11 0[] L= PP 73
Writing tool tips for Parameters........uei e 74
User defined lists (fill fUNCLIONS)oiiiicieiiiiiiiie ettt 74
Out-parameters in attached fUNCLIONScccuiii i 77
Handling calculation Order..........oceceiiiieeeiiireccrrececeerceees s senee s s sene s ssenasesseenasasssennnes 78
General rules for calculation order of attachmentsc.coveriiriiiiiiieieeeee, 78
Performance optimiSatioN.........cccuiii ittt e ettt e e e et e e e e aae e e e eanes 79
Calculation order in the instrument tableccooiiiiiienie e 79
Using buttons to trigger calculations..........oooiiiiieee e 79
7L = 80
Producing a zero coupon curve: zero_CUrVe.qIW.......cccccereeeiieenereeennieniereeereascssnssssnsenes 80
Zero coupon curve with blending and choice of methods: zero_curve2.qlw 82
A zero coupon studio: zero_studio.qIWc.coieeiiieiiiiiiiiiiiiiirerere e eneenes 83
Pricing a bond relative to a benchmark curve: bond_pricing.qlwccceeeeirrenannnnnnne... 84
An instrument table with spreads to a benchmark curve: bench_spreads.qglw.............. 86
Extending spread calculations with user input: bench_spreads2.glw 87

Page 5

8.7
8.8
8.9
8.10
8.11
8.12
8.13

Calculating covariances: covariance_matriX.qIW.......ccceceriimuniciiinniiiinnicnieneenen. 88

Creating a simple portfolio Value-at-Risk function: Portfolio_VaR.qlw.......ccccccevauereannes 89
Calculating tail rates: tail.qIW....ccccciiiiuiiiiiiiiiiiicrc e sesaseseens 90
Has the market been wrong or right?: expectations.qIw........cccccoirieeiiiiiieeiiiiieniiinnenana. 91
Creating an intra-day chart: intraday_graph.qIWcc..ccoreeeiirriecciiiecccrreecereeeeceeees 93
Using function pointers and classes: fp_test.qIWc..cooreeeiiiieeeiiiiieecciireecccrrecece e eeeene, 95
A condensed market page: market_page.qIW......cccceuucirieeeiirieeiiirieeccereceece e eenenes 96

Page 6

1 Introduction

1.1 What is the Quantlab system?

Production and distribution of financial analysis in a broad sense. Quantlab is a comprehensive
software environment where financial analysts and traders can build, simulate and visualize different
analyses and trading scenarios. Complex calculations involving real time data a multitude of time-series
data are quickly performed using the built-in expression language and the powerful real-time
evaluation engine. The resulting data may be presented in a view, such as a graph or a table, and can
also be exported into an external application (e.g. Microsoft Excel) using a COM interface, and using
APl:s to REST, Python and C#.

Developer and User Edition. Quantlab is available in two versions, a Developer edition and a User
edition. The Developer edition is the more complex application, which the analyst uses for constructing
trading strategies and other types of analysis. Traders, sales staff and brokers use the Quantlab User
edition to review and examine the analysis available within a workspace. They may for example change
the financial yield curves or instruments involved in the analysis or choose to look at a specific historical
time segment of interest.

Powerful expression language. The built-in expression language is highly versatile, and the end-user
is free to extend it using the innovative library functionality. The syntax resembles C++ with the
addition of high-level treatment of vectors and matrices: There is the possibility to express normal
algebraic expressions using vectors and matrices and you can expand scalar functions over vectors and
matrices. A powerful visual expression editor aids in the creation of complex expressions and instant
help is available for all functions and objects. Expressions are easily attached to different views using
the workspace manager, and a view may contain an unlimited number of expressions. For the
advanced user there is a C++ API available, exposing the full capability of Quantlab, thus creating a
truly open and extensible environment.

Real-time calculations. Connected to one of the supported real-time feeds, Quantlab is able to display
and manipulate expressions involving real-time term structures as well as historical time-series data.
The evaluation engine efficiently handles the re-calculation.

Historical data. An important purpose of Quantlab is to facilitate the analysis of time-series data, for
example the development of the TSIR over time. Any expressions created may thus easily be evaluated
over a certain time period, with the evaluation engine automatically taking care of multiple sets of
holidays, instruments going on and off the curves involved, different real-time links used for the same
instrument over time, to mention but a few of the complexities that Quantlab automatically handles.

SQL Database. The evaluation engine is connected to an industry standard SQL database, where the
necessary instrument and curve definitions resides, along with available time series data. The data may
come from an external source or may be automatically collected from a real-time feed such as Reuter
Triarch by using the Algorithmica History Server. More details on this solution, and the History Server
in particular, are available upon request.

External APl. Quantlab comes with a C++ API, exposing the full capability of the application, and
presenting the C++ programmer with an abundant financial class environment to build upon. Any
imaginable additional functionality may thus be added by the inclusion of one or several external plug-
in modules. Third party libraries are also expected to be available for a wide range of financial
calculations.

COM library. The Quantlab function library is available through a COM interface in Visual Basic. This
means that the advanced user can build own applications involving Visual Basic, MS Excel with help of
the Quantlab financial calculations and database communication. Moreover, all functions available in

Page 7

Quantlab are also possible to export to the COM interface, including your own Qlang library files and
C++dll:s.

Python API. As with the com-library, all built-in Qlang functions as well as user-built Qlang extensions
are exported to Python using a dynamic link. Every time the gl-extension is loaded to Python, all Qlang
functions are automatically loaded, with no need to create function stubs as a separate step.

1.2 Quantlab on-line function browser

Quantlab has an extensive function help browser that describes all functions, object types and
keywords, together with numerous code examples. The function browser can be found by pressing F1
when in the Editor. (Editor opened by Ctrl-L). By default, the Function browser connects to
Algorithmica Research’ on-line help library. This ensures that you always use the latest help
documentation. By right-clicking on the Function browser you may select to use the local copy of the
browser instead.

1.3 Contents of this document

The pdf help document is organized into five main chapters.

1** chapter — Introduction

2" chapter — Guides through the workspace environment

3" chapter — Talks about the programming basics of Quantlab

4t chapter — Describes how to build the user interface with graphs and tables

5t chapter — Presents a collection of case studies for typical uses of Quantlab

Page 8

2 Development environment

The development environment is designed with the specific requirements of the financial analyst in
mind. Traditionally the quantitative analyst has used a combination of development tools including
mathematical software packages, spreadsheets, C++ or Visual Basic to complete the work. Quantlab
integrates a high level programming language with the possibility to add user-defined functions or
classes from C++ or any COM compliant programming language. Quantlab handles all database
interaction and real time connections.

2.1 Starting and quitting Quantlab

2.1.1 Starting Quantlab

Start Quantlab by double-clicking on the Quantlab icon on your desktop. An empty workspace is
automatically opened. To open an existing workspace file use File|Open. There are example
workspaces in the folder Algorithmica Research\Quantlab\Examples\ Workspaces.

Valid license! Quantlab requires a valid license in order to work. The license is connected either to the
computer on which the software initially was installed on or to the user who initially signed for the
product. Please contact your IT department to check which type of license you have.

2.1.2 Quitting Quantlab

You quit your Quantlab session by clicking on File | Exit in the main menu.

Page 9

2.2 Quantlab workspace

The Quantlab system has two faces, a developer environment and a user environment. The developer
version work with a workspace and in parallel an Editor opened by Ctrl-L, designed for easy
programming and testing. The Function Browser is found within the Editor window by pressing F1.

=

. ELOOMBERG: idle

F zero bt 1
(@ Gragh

o zero hist- 1

- ALUSTREAM idie
- REFINTIV. ighe
- idie

fFit_12(c, ns_laguerrd(), std_weights.Ws|

Timestsmp Message

Lines: 20 Length: 634 Line: 7 Cok 46 Sek0[0

Workspace showing the main features of the developer edition

Windows within the workspace can be moved around freely. Windows with double bars on one edge
dock to the side you move it to. To un-dock a window simply double click on the window side with
double bars. If you do not want the window to dock, move it having the Ctrl button pressed down.

Page 10

2.3 Workspace tools

2.3.1 Workspace browser

In the workspace browser you can organize your expressions, tables, and graphs into folders and tabs.
On opening Quantlab an empty workspace will be created.

Workspace browser n

Workspace
- [&] BE Infl
: B/E inflation series
‘ob BE_Infl_series - 1
o Vield_series - 1
-1-[#2] Real yield curve and B/E inflation
E‘:’ BE_infl_curve - 1
E!‘:f name_labels - 1
E!‘:f real_yields - 1
=[] Calculators
+ Tab Parameters
+E Set future CPI assumptions
-1 Fwd Calc
+E Horizon Return Calc
+E List of index factors
-7 Expressions
BE_infl_curve
BE_Infl_series

cpi_scen_v
fwd_calc
hzr_calc
index_factor_list
input_cpi
name_labels
Price_series
real_yields
reinv_type_v
Yield_series

MMM MMM MMM MMM

A workspace example

By right clicking with the mouse on the workspace icon you can insert folders to organize your project.
To visually organize your tables and graphs in the workspace, you can insert tabs using Insert | Tab on
the menu. Graphics and tables can then be dragged-and-dropped under a relevant tab.

Rename a folder, tab, expression, graph or table by right clicking on the object you want to edit. Right
clicking also displays the most common properties of each object.

You can change the order among tabs by dragging and dropping: Use the left mouse button to drag a
tab to the workspace symbol in the top of the workspace browser. This will put the selected tab last in
the list.

2.3.2 Qlang Developer Editor

In the Editor you write the code to be executed and viewed in tables or graphs. It opens in a separate
window using Ctrl+L, or Tools | Qlang Developer. Code written in the editor is saved in plain text so
you can import and export this code to any text editor. To get help on using the built-in functions
please see the Function browser (opens with F1).

Page 11

¥} Qlang Developer - m] X

File Edit View Dcbug Scitings Window Help

Workspace X Expression X

=B Expression option(null: hard);
myFunc

number myFunc(number x){

Compilerlog = Evaluation log =

File Message File Timestamp Message

QOLL has dynamic base address

Variables Watches

Name Value Expression v

<Add Watch>

Lines: 7 Length: 192 Line:7 Cok2 Sek0|0 LF INS

Sample code in the Expression editor

Coding help is available as colour-coded text, parenthesis checks, function parameter lookups, and
object member lists.

Default colour codes:

Colour code Type of code
Green Comments

Blue Key words in Qlang
Beige String

Unfinished string

Green-blue Date

Fluorescent green | Unfinished date

Violet Number

User defined settings for the Developer Editor can be found in the top menu Settings, and Settings |
Appearance, where also background colour and indentation can be changed. Note that there are
detailed descriptions in the separate document Quantlab Editor 3.1.x.pdf document.

Useful tool-tip! To assist in entering built-in or user functions, a tool tip will be displayed when you
enter the first left hand parenthesis of the function. All objects will show its member list when entering
the dot after the name.

Page 12

2.3.3 Function browser

An important part of the help that comes with Quantlab is the function browser. Press F1 or Help |
Qlang documentation to open. All types, functions, objects, and members are displayed. If you write
library files or program your own C++ functions using the Quantlab API, these functions will also show
up in the function browser.

:,;; Clang Documentation _ O %
Search
2 QLang reference

|_1 Core Programming A
|__] Basic Types and Functions
=~ Mathematics cos

=~ Basic Functions Trigonometric functions.
----- & abs

..... & acos
----- & asin
..... & atan
----- § atan2
..... & ceil

""" & cos Parameters
..... & cosh
----- @ cum_normal Cl
..... & div
..... § exp Returns
..... & expml

----- § floor

..... . fmod

----- @ inv_normal
""" @ log number tri_area(number b, number c, number angle) = b*c*cos(angle)/2;
..... & logl0

..... & max

..... & min

----- & pdf_normal

..... & pow

..... & round

..... & sign

..... & sin

..... & sinh

----- % solve_cubic

----- & solve_guadratic
..... & sar

..... & saqrt

..... @ tan

..... & tanh hd < >

Syntax

number cos(number option(nullable) a)

The cosinus of a.

Example

The Function browser

The left window will display all available objects, members and functions. The right-hand window will
display the active functions’ overloaded variants including the type and name of the parameters.

Some functions have example code for ease of understanding. The help window is by default read
directly from Algorithmica Research' web servers. A locally stored help can be accessed by right-clicking
in any top window and de-selecting “online help” in the menu. (If initially installed with the program.)

Speed tip! Using search and then clicking on a given found function, you will get to the place in the
tree where that function is placed.

Page 13

2.3.4 Real time quotes browser

When viewing any graph or table that includes today's date, the real time browser will display real
time data. By default, today's date is used whenever you want to view real time data.

Only instruments relevant to the active graph or table will be displayed in the real time browser. In
order to view real time quotes for another graph or table, simply click on it to make it the active
window.

The order of the columns can be changed and switched on/off by right-clicking in the window and
selecting “column properties”.

[]5top update T able

Istrument Time Ak Ask-bh Bid Bid-bb

DEEEMSwaplly 161023 37440 31284 3.0440 3.0541
DkKEMSwapdy 1E10:27 39756 39775 2912 292
DkKEMSwapdy TE10:28 27190 37259 26482 26531
DKEEMSwapdy 1E123 35122 35136 34414 34465
DKEBMSwapSy 161028 33721 3.3767 3.3M3 3.3052
DKEBMSwapBy 1B1:28 32778 3.282 3.2070 324
DKKEMSwap? 1E10:23 32146 3218 31438 3148
DkKEMSwapdy TE10:23 31723 31742 215 21m7
DkKEMSwap®y TE:10:23 371409 31429 2.07E5 2.07ER
DKEBMSwapldy 161028 31035 30823 3.0035 3m13
DKEBMSwap2ly 161028 29765 29543 2.8765 2.8883
DKEBMSwap2sy 16107 28325 28139 27325 27421
DKKEMSwapdly 161028 27045 26874 26045 26146

OO00000dooocn

Feszet |Jpdate

Example of the real time browser with instruments and quotes

The Stop check box will turn of all pass through of quotes to the analysis and code. The individual check
boxes at the side of the instrument will stop only that instrument to update.

Note! It is no longer possible to override the quotes with user defined values directly in this window.
In order to override quotes, code needs to be written using the “.set_quote()” function for the
instrument.

Page 14

2.3.5 Messages - warnings and run-time errors

There are two phases to programming and testing financial expressions in Quantlab. First the written
expression must be syntactically correct. This is taken care of within the Qlang Developer Editor and
compiler. Secondly, the financial expression must make sense when used on real world data.

General settings for when and why the messages should display can be found in Tools | Options |
Messages. Read further under 2.4.4.

When running an expression window any run-time messages will show in the View | Messages tab.

[

Function View Time Description
@ pricing_orig- 1 Pricing 2023-06-28 - 16:16:37 Ma such ric (ric="run’)
@ table_data- 1 GraphData 2023-06-28 - 16:16:37 Mo such ric {ric="run")
@ test-1 OlSlmplied TN Calc 2023-06-28 - 16:16:37 Argument not nullable

@] Predicti... [B] Workin...
= — NUM

Example of warnings in the run time environment
Typical warnings occur when:
- historical data is missing in the database
- calculations fail due to missing data

- required static data is missing for any instrument

By right clicking on the warnings, copy, clear and remove functions appear.

2.3.6 Progress list

Workspaces can eventually contain hundreds of expression that will be evaluated each time any
parameters or quotes change. The progress list will display which expressions that currently are being
re-calculated.

x
Function View Progress

test-1 Table |

Example of the progress list

For each graph or table a star (*) in the window header is shown as long as there is at least one
attachment that is still calculating.

To manually stop the execution of an expression, right click on the expression attached to a specific
graph or table in the workspace browser and press Stop. The evaluation cannot be stopped in the
progress window.

Speed tip! If the computer starts to slow down due to extensive re-calculations, you can manually set
a re-calculation frequency. Under the Tools | Options menu, the real time re-calculation frequency can
be set to a higher number. For example, entering 10 seconds will drastically reduce the load.

Page 15

2.4 Setting preferences (Tools)

Under the Tools Option menu, you will find some useful possibilities to set preferences for the general
appearance of Quantlab, for the expression window and for paths when loading various library files.

General

General Messages Table

Qunte side

| Show dialog on attachment Diefault: Mid

[requires recalc of

| Show dialog on view creation all expressions)

Calculate visble views only

Realtime

Auto save workspace

Miniirriurn tirne: <
betwesn updates 0%

Recently used file list [in seconds)

Number of files: 8

tdax path length - = Clear
[# of characters): E 2 for E 7| days

24.1

Save subscription

aK Cancel

Database options

The name of the ODBC data source that is used for retrieving all instrument and time series data. You
can change the ODBC source and then press Reload in order to switch the database. This is equivalent
to closing down Quantlab and re-open it with the current workspace.

2.4.2

In tab General:

Option to show a dialog when attaching functions to graphs or tables
Option to show a name dialog when creating a view (table or graph)

Option to calculate visible views only. Normally, this should be checked as it speeds up
performance. If all views must be calculated at each relevant real time update, it should be
unchecked.

Number of files in the recently used files list and the maximum number of characters used for
the name and the paths in the menu.

Default quote side. When constructing an instrument or a curve you have several possibilities
to set the quote side. However, often the quote side is an optional parameter and if it is not
set, the default value defined in this dialog will be used.

Minimum time between calculations. Useful for reducing the number of recalculations when
real time data is updated frequently. This is only used for the calculations, the Realtime Quotes
window (see 2.3.4) will not be affected.

Save favourite real time instrument names (real time identification codes) for faster
workspace start-up times. You set the number of days that Quantlab will save what
instruments you have used. When the options is set at 1 or more days, on start-up Quantlab
will request a subscription to these real time items even before you open a workspace. Often,
this will drastically reduce the time it takes to open workspaces having many real time
instruments. The accumulated history of real time items can be cleared by pressing the Clear
button.

Page 16

243

24.4

In tab Extended:

Maximum number of warnings. Put a limit on how many warnings will be written in the
warnings window each time an attachment is evaluated. If the number of errors in your
expressions or database is very large, the mere update of this window may be time consuming.
In such a case it may be useful to limit the number of warnings until the errors are taken care
of.

Calculation thread priority. This can be changed in order to let Quantlab get larger or smaller
part of the CPU time of the computer.

In tab Messages:

Warnings, displaying run-time messages such as real-time data missing or non-evaluating
functions.

Compiler messages and errors, displaying information from the compiling session.

The display level can be individually set to:

2.4.6

Always show
Show if message window visible

Don’t show

In tab Table:

Show errors messages. In some cases, errors may be specific for a cell in a table. To show all
upcoming errors within the tables, click this check box.

Enable direct cell editing. If this is checked you can select a cell in an input column in a table
and edit directly. Otherwise you have to double-click or use F2.

In tab Edit (for the expression editor):

Choice of indentation. Automatic indentation and tab length.
Debug windows. Number of decimals when showing numerical values of variables.

Colour display setting. Either use default setting or choose your own colours for different
types of text in the expression windows.

Page 17

3 Programming in Quantlab using Qlang

3.1 Introduction

The Quantlab language Qlang makes financial programming easy! Qlang is designed to work with time
series data vectors and matrices. Included in Qlang is also an extensive function library with many
tailor-made fixed income functions that makes programming fast and efficient.

Programming in Quantlab follows these basic steps:
1. Write code in an expression editor
2. Check and compile the code [by pressing F7, or choosing Exp, Compile]
3. If code compiled correctly, the "out functions" appear in the Workspace browser
4. Drag and drop the functions from the Workspace browser to graphs and tables

When programming is finished and workspaces have been created, they are ready to be distributed to
others. Everyone using Quantlab, either Developer or User Edition, can now run all analytics of the
workspace presented in graphs and tables.

3.2 A simple example

Let’s look at a simple function that adds two numbers:

number my add(number x, number y) = X + y;

In order to make this function available for presentation in tables or graphs the keyword out is used,
written at the start of the function definition:

out number my add(number x, number y) = x + y;

If you write this function in an expression window (Insert — Expression) you will be able to compile the
code by pressing F7. As the code is correct you will not get any warnings. Try to change the code to
something incorrect, for example:

out number my add(number x, number y) = X + y +

If you then press F7 again, you will get an error message (if messages have not been switched off in
under options | messages).

1} Quantlab Change back to the original version of the function, recompile
File Edit View Inset Tools Window Help the code and look for the Workspace window. In the

= Workspace window (View — Workspace) you will find a + sign.
Workspace If you click the plus sign, you will find the function my_add.

=G5 Expression This function is available to attach to a table. To do so, insert

a new table (Insert — Table) and give it a name. Then drag the
function my_add (using the left key of the mouse) to the table
window and drop it there. Two Number Edit Boxes will appear
next to the table, one for each parameter of the function, and
these are used for choosing the values of x and y. Enter two
numbers in the boxes and press Recalc to make Quantlab
evaluate your function and show the result in the table.

Chapter 6 explains more about how to format tables and graphs.

Page 18

3.3 Keyword list

This section is a summary of the keywords that form the language base. Keywords are marked with
blue when written in the expression editor. (In default appearance mode. See Settings | Appearance
for more options.) Note that a description on each keyword can be found in the function browser.

The keywords Module, Public and Import are used for the management of expressions.

module The module keyword creates a namespace of functions.

public The public keyword assigns a function to be available outside a module.

import The import keyword loads the public functions of a module so that they become
local functions.

The keyword Return is used when defining functions in the standard form.

return

The return keyword terminates the current function call and returns the value or
object following it. See 3.4.1.

The keyword void is for defining procedures.

void

The void keyword replaces the return value type for a function that does not return
any value. See 3.4.1.

The keyword out is special for Qlang and used for making functions available in the user interface.

out

The out keyword assigns a function to become available for attachments to graphs
or tables after compilation. See 3.4.4 for the use on parameters.

The keyword option is special for Qlang and used for certain options for variables and functions.

option

option(nullable) is used in a function definition before a parameter name to make
the function possible to call with a null value in that parameter.

option.

option (category: <string>) is used immediately after the function header in a library
file to indicate what category the function shall appear in within the Function
browser. The string contains the name of the category, either an existing category
or a new one.

option (com_name: <string>) is used immediately after the function header in a
library file to publish the function to the COM interface (for use in excel or C#) using
a user defined name. This is necessary if functions in library are overloaded as COM
does not allow for overloaded functions.

The keywords if, switch, else, do, while, for, break and continue are used for flow control.

if else

The if and else keywords are used for conditional expression evaluation. See 3.8.1.

Page 19

switch The switch keyword is used when there are several cases in a comparison situation.
See 3.8.3

while The while keyword is used for conditional loops with initial condition test. See 3.8.1.

do while The do while keywords are used for conditional loops with final condition test. See
3.8.1.

for The for keyword is used for unconditional loops. See 3.8.2.

break The break keyword terminates the smallest enclosing loop statement (do, for, or
while) in which it appears.

continue The continue keyword terminates the current iteration of the smallest enclosing
loop statement (do, for, or while) in which it appears, and the execution continues
with the next iteration.

The keywords Try and Catch are used for error handling.

try The try keyword introduces a code section in which errors are expected to occur.
See 3.8.4.
catch The catch keyword introduces a code section that takes care of the errors in the

preceding try section. See 3.8.4.

The keywords String, Matrix and Vector are used for creating specific types.

string The string keyword assigns a variable, function or a function parameter to be a
string. See 3.7.1.

matrix The matrix keyword assigns a variable, function or a function parameter to be a
matrix. See 3.7.7.

vector The vector keyword assigns a variable, function or a function parameter to be a
vector. See 3.7.7.

These keywords are always used in connection with an object type. For example, to create variable
which is a vector of numbers, you write

vector (number) my variable;

The keyword Series is a special Qlang feature used in particular for time-series calculations.

series

The series keyword creates a series of elements by evaluating an expression over a
range. The dimension of the series is equal to the number of ranges. See 3.7.10.

The keywords Object and New are used when defining objects.

class The class keyword is used when defining an object class. See 3.7.3.
object The object keyword is used when defining an object class. See 3.7.3.
new The new keyword is used when creating an instance of an object. See 3.7.3.

The keywords typedef and enum are used for defining types.

Page 20

typedef The typedef keyword is used when giving new names to types. See 3.7.6.

enum The enum keyword is used when creating enum lists. See 3.7.8.

The keyword Function is used for function reference in function definitions.

function The function keyword refers to a function parameter in a function definition. See
3.4.6.

The keyword operator is used when defining operators, typically for objects.

operator The operator keyword is used when defining operators, see 3.7.4.

3.4 Functions

Functions can be defined in two ways, in the standard way and the compact way. In the standard
function definition, the syntax resembles very much the syntax of C++ or similar languages, in the
compact form the function definition is written by using only one expression. Both forms can be used
in the same expression window.

3.4.1 Standard function definition
The standard way of defining a function looks like this:

return value type function name (parameter typel parameter namel, ..)

{
< function body >
return < expression >;

}

The function is defined by declaring the return value type, the function name followed by a
parenthesis, and then a function body. Inside the parenthesis all the function parameters are defined
by writing their types and names. Note that each parameter requires its own type definition, and that
these types are specific for Qlang. Within the function body the usual variable declarations and
operating statements are written, each ending with a semi-colon. The function returns the value of the
expression that follows immediately after the keyword return.

For example, a function adding two numbers:

out number my add(number x, number y) {
return x+y;

}

The return value type must be declared as any of the Qlang types. If the return value type is set to void
and the return statement is omitted, the function returns no value:

void function name (parameter typel parameter namel, ..)

{
< function body >

}

The keyword out is used to make a function available for attaching to graphs or tables. For example,
the following function could be attached to a table in order to display a multiplication table:

Page 21

out vector (number) mult (number x) {
vector (number) y = [1, 2, 3, 4];
return x*y;

}

3.4.2 Compact function definition

This is an alternative way of defining functions, which is useful for simple expressions. It is written
starting with a return value type and a function name, followed by a parenthesis containing the
parameters, and then an equality sign. After the equality signh must be a complete function expression.
The function takes the following form:

return value type function name (parameter typel parameter namel, ..) = <
function expression >;

Note that the expression ends with a semi-colon. The my_add example used earlier would look like
this:

out number my add(number x, number y) = X + y;

These functions are often written in one row, but for the sake of readiness, they can be written in
several rows:

out number my add(number my x parameter, number my y parameter) =
my X parameter + my y parameter;

New since 3.1.2048: the generic return type “auto” can be used. It is used in the same way as in C++.

out auto mult (number x) {
vector (number) y = [1, 2, 3, 4]1;
return x*y;

}

3.4.3 Instances of functions

When a function is attached to a table or a graph an instance of the function is created. You may have
several instances of the same function in the same graph or table. In the calculations and user
interface, Quantlab will treat them as separate functions that may or may not use the same input
parameters. Only when the code, i.e. the definition of the function, is changed this will affect all
function instances.

3.4.4 Function parameters

Function parameters are defined by the type followed by the parameter name, as described in 3.4.1.
There is also a possibility to define optional parameters with a default value by setting these
parameters equal to an expression, for instance:

number my add (number x, number y = 1) {
return x+y;

}

out number test my add(number x) {
return my add(x);

}

Page 22

The first function, my_add, has one optional parameter y which is defaulted to 1 if not set, as in the
second function test_my_add. The default value may also be something more complex, for example a
function call:

number default (number x) {
return x*2;

}

number my add (number x, number y = default (2)) {
return x+y;

}

out number test my add(number x) {
return my add(x);

}

In this example we have defined a separate function called default which calculates the default value
for the function.

When attaching functions to graphs or tables, all parameters, including optional ones are displayed,
without default values.

When calling functions, the function parameters are by default copies (for number, date and logical)
or copies of references (for string and object) of the original variable.

In the following example, the function f2 returns 0 as function f1 only changes a copy of the original
variable.

void f1 (number c)
c =1;

out number £f2()
number b = 0;
f1(b);
return b;

}

{

Using the keyword out before a parameter definition will cause that parameter to be referring to the
original variable (for number, date and logical) or original reference (for string and object), allowing
change of the external environment. This is similar to the Pascal VAR parameter and the C++ way of
declaring a parameter as a reference (using &).

In the following example, the function f2 returns 1 as function f1 changes the value of the original
variable.

void f1l (out number c) {
c =1;

}

out number £f2() {
number b = 0;
£1(b);
return b;

}

3.4.5 Calling functions

There are a large number of pre-defined functions in Qlang for general and financial purposes. These
are divided into groups according to their purpose and can be found in the Quantlab function browser.
The function browser is made visible from the Quantlab menu bar (View — Function Browser).

Both user-defined functions and pre-defined functions are called similarly to common programming
languages. For example the user-defined function my_add in 3.2 could be called like this:

Page 23

result = my add(2, 3);

if we have defined a variable called result, of the type number.

Important news! From version 3.0 and onwards, functions without any parameters must be called
using an empty parentheses, for example my_func(). This is a common case for many object member
functions.

3.4.6 Function pointers

In Quantlab 3.0 the concept of function pointers is introduced. It is useful in various cases, for example
when performing optimisation calculations. Here is an example which uses the minimisation function
zero_bisect. See also 3.7.3 for information on object classes.

class param object{
// This object contains all parameters that are used for
// calculating the function f,except for the variable x.
public:

number a param;

bi

number f(param_object p, number x) {
// The object function
return -p.a param*x + 1;

}

out number test () {
// Find x that makes f = 0.
param object p = new param object;
p.a param = 4;
number x1 = -3;
number x2 = 4;
number tol = 0.001;
return zero bisect(p, &f, x1, x2, tol);

On the last line we call zero_bisect with a reference to the function f using the &-sign. The function
zero_bisect requires that the function that is referenced to (in our case, f) has two parameters: An
object and an x-parameter. In this way you can construct a function f that is arbitrarily complicated as
long as it is a function of a single variable x.

The following example shows how to define your own function pointers. The function calc below
performs any calculation using a function f that takes two parameters. We have defined two such
functions: plus and minus. The last function below uses these functions depending on the user input.

number plus (number a, number b) = a + b;
number minus (number a, number b) = a - b;

number calc (number a, number b, number function (number a, number b) f) {
return f(a, b);

}

out number test (number a, number b, string method) {

if (method == 'plus')
return calc(a, b, &plus);
if (method == 'minus')

return calc(a, b, &minus);

Page 24

The syntax for the declaration of the function pointer is thus:

<return type> function (<type>param 1, <type> param 2..) function param name
More examples of function pointers are found in the case study in 8.12.

3.5 Local and global variables

In a function, local variables may be declared as in other common programming languages, with or
without initialisation, for example:

<function declaration>{
number x;

number y = 5;

vector (instrument) i;

}
For global variables the treatment is somewhat more special. Global variables are only common to all
calls from functions within the same expression window. An example:

number x;
out number my function (number y) {
if (null(x)){
x = 0;
}
else({
x = x+1;
}
return x*y;

}

Each time my_function is called, the variable x will be updated. An extensive example of how to use
global variables is discussed in 8.9.

Important! It is important to note that multiple instances of functions attached to the same or different
tables or graphs will all refer to the same instance of the global variable.

3.6 Operators

Common mathematical and logical operators are available in Qlang. Operators work like ordinary
functions, for example allowing vector and matrix expansion, see 3.7.7.

Arithmetic operators:
+ addition

- subtraction

* multiplication
/ division
A power (can also be written using the function pow)

Page 25

Note! The type of multiplication is determined by the operands. A multiplication of two vectors will
result in a scalar (so called scalar product). A multiplication of matrices or a matrix and a vector is
treated as a matrix multiplication. See 3.7.7.

Logical operators:

! logical negation

I= not equal to

&& logical AND

| logical OR

<,> logical relation operators
== logical equality operator

There is also a simple conditional operator available using the following syntax:
<conditional expression> ? <expressionl> : <expression2>

If the conditional expression is evaluated as true then expressionl will be returned, otherwise
expression2. For example, the following function will return x if it is positive, otherwise 0.

number my function (number x) = x>0 ? x : 07

Quantlab will perform a short-circuit evaluation of logical and conditional expressions, only executing
those that are necessary.

Note! As in many languages, assighment operators are allowed together with the assignment sign
“="). Such that <variable> /= 10; means divide value in variable with 10.

Also:

+= for add

-= for subtract

*= for multiplication

3.7 Data types

Qlang carries a rich family of types, much like any modern programming language.

3.7.1 Basic types

The number of basic types in Qlang is limited for ease of use. Qlang has the following seven basic types.

Type Description Literals

Number The basic float numeric type Numbers are simply entered as they are. Very small
or large numbers can be written with mantissa,
then d, D, e or E, then the exponent. 1.2e-4 is
interpreted as 0.00012, or 1.2 basis points.

Page 26

Integer Integer type Same as in other languages. Any indexation for
vectors, loops etc starts with 0.

Date The basic date type Dates are written using # then ISO standard dates.
#2000-12-29 is interpreted as the 29th of
December 2000.

Timestamp | Basic long date including time Timestamps are written using # with iso date and
time down to optional thousands of a second. ex.

timestamp tss = #2021-01-01 12:30:22.222;

Logical The basic Boolean type True or false.

String The basic character string type Strings are encapsulated by simple or double
quotation marks. Both 'text' and "text" are
interpreted as strings containing the word text.

Month A month basic type It is a date without any day reference. e.g. #2023-
03.
Object The basic object reference type | No literal.

Of the above basic types, only the object basic type cannot be used directly in variable or function
parameter declaration. Instead of the object basic type, the object types described below are used.

This is an example of using some basic types to get different user controls when attached to a table.

out number myFunc(string myStr, number myNum, date myDate)

{
}

Quantlab recognizes the types and automatically creates appropriate controls.

3.7.2 Object types and member functions

There are many object types available in Qlang. Many of them are financial, such as instrument and
curve, but there are a others used for presentation of data, for mathematical purposes and so on.

Objects are generally created as a result of Qlang function calls. They can then be stored in variables
or used directly for further function calls. Objects also have member functions, which can be called
using a standard dot notation.

Below is an example of a function that returns the yield of an instrument on a specified trade date. An
instrument object is created from the information in the database, and then the member function
yield() is called to extract the sought yield.

number my yield(instrument name i, date tradeD) {
return instrument (i, tradeD) .yield();

}

Some objects methods have a corresponding function in another object. As an example, both rows
below will return the dirty price of an instrument priced from a zero coupon curve model fit of the
market rates.

fit result.dirty price (instrument);

instrument.dirty price (fit result);

Page 27

3.7.3 Creating new classes

An introduction to working with user-defined classes

In Quantlab 3.0 it is possible to create new classes with member variables and member functions. The
syntax is very much in line with C++. Below is an example of a definition of an object class that stores
two numbers, called my_pair. The object class has a member function that adds the two numbers and
a creator with the same name as the object class. The last function can be attached to a table in order
to test the object class.

class my pair

{
public:
number add () ;

number x ;

number y ;

bi

//Note that you need to declare all member functions inside the class definition - as
is done with the function add() above.

my pair my pair (number x, number y) {

my pair t n = new my pair ;
t n.x = x ;
tny=y;

return t n ;

}

number my pair.add() {
return x + vy ;

}
out number test my pair (number x, number y) {

my pair p = my pair(x, y);
return p.add();

The class definition syntax

A user-defined class is defined using the following syntax:

class <class name> [: <class to inherit from>]
{ [public:] | [private:]
i%ﬁame of constructor (i.e. class name)> (<params>) ;]
i;irtual <return type> <name of virtual member function> (<params>) ;]
i%ﬁame of member function> (<params>) ;]
i%éype of member variable> <name of member variable> ;]
}og
<class name>.<name of constructor> (<params>)

[: <name of member variable> (<params>),...]
{ <body>]

<return type> <class name>.<name of member function> (<params>)
{ <body> }

Page 28

A class may inherit from another class — called a super-class — by using the familiar : <class to
inherit from> notation above.

Inaclass —asopposed to an object —all members and member functions (including constructors)
are declared private: by default. This means that they cannot be accessed by any code outside the
class. In order to make them accessible from the outside they need to be within the scope of a
preceding public: declaration:

class myClass

{
public:
number get secret number () ;

private:
number secret number ;

b
Now, the secret_number above can only by accessed through the get_secret_number().

A special type of member function called a constructor is used to initialize the member variables of a
class. It is possible to do this using the familiar [: <name of member variable to initialize>(<params>)]
notation, as in the following example:

class myClass

{
public:
myClass (number n) ;

number get secret number () ;

private:
number secret number ;

b

myClass.myClass (number n)
: secret number (n)

{1

number myClass.get secret number ()

{

return secret_number ;

}

Note that a constructor cannot have an explicit return type, since it implicitly returns the newly created
class object.

The virtual keyword declares a virtual member function that can be overridden by any inheriting
class as seen in the following example. Note that all virtual member functions need to be defined in all
classes — also in the super-class:

class A

{
public:
virtual string f() ;
string g () ;

Page 29

string A.f() { return “A.f” ; }
string A.g() { return “A.g” ; }

class B : public A

{
public:
virtual string £()
string g () ;

b

string B.f() { return “B.f” ; }

”

string B.g() { return “B.g” ; }

class C : public A

{
public:
virtual string f£() ;
string g()

}oi

string C.f() { return “C.f” ; }
string C.g() { return “C.g” ; }

out vector(string) test f()

{

vector(A) v = [new A, new B, new C] ;

return v.£() ;

}
out vector (string) test g()
{

vector (A) v = [new A, new B, new C] ;

return v.g() ;

The output table below shows the difference between the virtual member function f() and the
normal member function g():

tegt_f-1 | test_g-1

A f g
B.f &g
C.f g

Scope of class members and the use of this

The familiar dot notation is used to access member variables and calling member functions in a class:
A a = new A ;

a.my number = 42 ; // Accessing one of A:s members

a.f() ; // Calling one of A:s member functions

By explicitly naming the class name after the dot it is possible to access member functions or variables
that are normally hidden by definitions in inheriting classes. This can be done even if the function is
not declared as virtual:

Page 30

B b = new B ;
b.f() ; // Calling the f() member function defined in B

b.A.f() ; // Calling the f() member function defined in A

It is possible for a member function of a class to obtain a handle to itself by using the this
This can for example used as a parameter in function calls as in the following example:

string func(A a)
{
return a.f() ;

}

logical A.func()
{

string sl = this.f () ;
string s2 = func(this) ;
return sl == s2 ; // always returns true

keyword.

Please note though, that a member function can always access all of its own member variables directly

without using this.

Casting classes

When working with class hierarchies it is often useful to convert a handle to a super class object into
a handle of the actual base class it belongs to (or any other class in between). This is called a dynamic

cast and is performed by using the dynamic cast operator:

A a

new B ; // This is possible since class B inherits from class A

B b = dynamic cast(a) ; // Convert into a handle to a B

If the cast is not possible due to the classes not being members of the same class hierarchy it will fail

and an error will be thrown.

When writing library files, it is also possible to add new member functions to built-in object classes,

see 4.3. More examples of creating object classes are found in the case study in 8.12.

3.7.4 Example of classes and operators

Here is a simple example where complex numbers and the + operator is defined in a library file:

class complex {
private:
number r, i;
public:
complex (number r, number 1);
number re();
number im();

}i

complex.complex (number r, number i) : r(r), i(i) {;}

number complex.re () {

return r;

number complex.im() {

return 1i;

// Operator overloaded using a member function

complex operator + (complex c, complex d)

return new complex(c.re() + d.re(), c.im() + d.im());

It can be tested by calling a function like this:

out vector (number) test complex () {
complex a = new complex(1.2, 3.4);

complex b = new complex(5.6, 7.8);

complex ¢ = a + Db;

return [c.re (), c.im()];

3.7.5 Type names

In Qlang several type names are defined. The type name is simply a different name for one of the
already existing basic or object types, similar to using typedef in C/C++. An example of a type name is
instrument_name, which really is a string used for finding an instrument in the database.

There are two purposes of type names: The first is to clarify the programming code; the second is that
the graphical interface of Quantlab might recognize them and create control boxes appropriate for the
input. Taking instrument_name again as an example, a control box for an instrument_name presents
a list of all instruments in the database, thus making instrument selection easier.

3.7.6 Definition of types

In Quantlab 3.0 you can use the keyword typedef to rename existing types, as in C++. For example the
number type can be called my_n:

typedef number my n;
my n j = 1;
out my n test () {

return j;

}

Page 32

The user interface recognises your types as they are only other names for existing types.

3.7.7 Enum types

There are a number of enum types defined in Qlang. In earlier versions, they where only strings, now
they are distinct types written with capital letters. A couple of examples are:

error_type: E_UNSPECIFIC, E_CONSTRAINT, E_NULL, E_RANGE, etc.
rate_type: RT_CONT, RT_SIMPLE, RT_EFFECTIVE, etc.
day_count_method: DC_ACT_365, DC_ACT_360, DC_30_360, etc.
bd_convention: BD_NONE, BD_FOLLOWING, BD_MOD_FOLLOWING, etc.

See the Function browser for more information on types.

Important news! In Quantlab workspaces, or lib files, created in version 2.4 or earlier, you must change
the string enum type names to the new type names in order to compile the files.

3.7.8 Declaring your own enum types

In Quantlab there is a possibility to create own enum types. If used as an enum class, the prefix for the
enum must always be used, otherwise there will be a hard compiler error. It is possible to create an
enum without being a class as well.

class enum weather
{
SUNNY option(str:"sunny weather"),
CLOUDY option(str:"cloudy weather"),
WINDY option(str: "windy weather")
}i
To extract a string equivalent for each enum in a list you can use the expand_enum() function.
out vector(string) weather types|() {
vector (weather) w;
expand_enum (w) ;
return string(w);

}

It is also possible to use a string as input and find its corresponding enum.

out string test reverse(string myenum)

{
weather w;
str to enum(myenum,w) ;

if (w == weather.SUNNY)
return "Weather will be sunny!";

else
return "Sorry, no outdoors today.";

If “option(<string>)” is not given, the enum itself will also be used as a string equivalent.

Page 33

3.7.9 Vectors and matrices

Creating vectors and matrices

Objects can be aggregated into vectors and matrices. The basic way of creating vectors or matrices is
by using brackets:

Vectors are created using brackets and comma, [element1, element2, ...].

Matrices are created from row vectors with brackets and comma, [[elementll, elementl2, ...],
[element21, element22, ...], ...]. All vectors must have the same size.

All elements in a matrix or vector must be of the same type. The type is declared within parentheses
after the keyword vector or matrix. Here is an example of how to create a vector of three elements:

vector (number) v = [1, 2, 31;

It is possible to specify the dimension of the vector or matrix without assigning it:

matrix (number) m([3,7];

The matrix m will have three rows and seven columns. It is also possible to omit the dimension when
declaring the matrix or vector:

matrix (number) m;

The matrix m will initially be null and have zero rows and columns and but this can be changed in
runtime. Here is an example of how a vector can be declared and assigned:

out vector (number) vtest () {
vector (number) v;
v = [2,3];
return v;

}

A common way of producing vectors or matrices is however by the use of vector (or matrix) expansion.
This means that if you for example call a function with a vector rather than a scalar, Quantlab calculates
a function value for each element in the vector. This also works for matrices. In the following example
a function taking scalars is called with one scalar and one vector.

number my add (number x, number y)

{

return x + y;

}

out vector (number) fl (number x)
{
vector (number) v = [1, 2, 31;
return my add(x, v);

}

When calling the function my_add with a vector in the second argument, the function will expand over
the vector v. This means that the number x is added to each element in the vector, and the result is a
vector that the function f1 returns.

Note! When using vector expansion, you must be sure that you call the function with a vector where
the elements are of the same type as the argument type in the function you are calling. For example,
if the argument is of the type date, then you must have a vector of dates as input.

Page 34

Some functions naturally return a vector, for example the curve object member function instruments()
that returns a vector of instruments.
Copying vectors and matrices

A direct assignment of one vector to another gives only an assignment of the reference, i.e. not the
content of the vector. Therefore, the following example returns [1, 45, 3]:

out vector (number) utest () {
vector (number) u, v;

v = [1,2,3];
u = vy
v[l] = 45;

return u;

To copy the content of the vector you could for example use a help function:

v ¢ (number v) = v

which uses the vector expansion to create a copy. There is also a built-in function clone_vector that
gives a true copy of the vector.

Accessing and assigning elements in vectors and matrices

Elements in vectors and matrices can be accessed via indexation, using brackets. Indexations start at
0. For example, the following function returns the value 6.

out number my_vector_function(){
vector (number) x = [3, 5, 6];
return x[2];

}

For matrices, elements are accessed via row and column number, separated by comma. The following
function takes out the value 5 from the matrix.

out number my matrix function() {
matrix (number) y = [[1, 31, [5, 611,
return y[1,0];

}

(Remember that indexation starts at 0.) Assigning values to matrices and vectors is done in the same
way. For example

Y[lr OJ - 77/

will set the element in the second row and first column of the matrix y to the value of 77.

Note! Since Quantlab 3.1 vectors can be called using the colon operator, such that x[2:4] will give the
range from index 2 to 4 element, and x[2:] will give element 2 to end of vector. The same notation can
be used for matrices.

It is also possible to replace the function index_vector() and one_vector() with a constructor directly
on the vector type, see example below;

// BRI IR R I b b b b b S SR I S b S b Sb b b SE e S b b Sb b S 2R e S b b Sb S b I Sb S b b Sb b b 2b e S S b b S b I Sh b S b b Sb b I Sb b S i 3

// A construct that replaces: one vector(), index_vector(), range vector ()
// PR B I B B I I e I I e I I e I I e I I b I I I e e I b I e I b I e b b I b b b b b b b b b b b b b b g

// An index vector, from 1 to 10.

Page 35

// replace "index vector (10) + 1"
out vector(integer) v _ix() = vector(i:10 ; i+1);

"

// replace "one vector (10)
out vector(integer) v _ix2() = vector(i:10 ; 1);

// A 10 size string vector with empty string
out vector (string) empty string v() = vector(i:10 ; '');

// A 10 size date vector with only business dates
out vector (date) mydates () = vector(i:10 ;
calendar ("SWEDEN") .move bus days (today(), i));

Multiplication of matrices and vectors

When multiplying two vectors, the inner product is always used. When multiplying a matrix with a
vector the number of columns or rows must be the same as the number of elements in the vector. If v
is a vector and m is a matrix, then

v*m

will produce vector if the number of elements in v is the same as the number of rows in m, otherwise
an error message will be shown. In the same manner,

m*v

will produce a vector only if the number of columns in m is the same as the number of elements in v.

Note that a vector in Qlang does not have a "direction"; there are no explicit column or row vectors. If
you want to be explicit when handling column and row vectors, they must be declared as matrices. For
example, the following two functions produce the same scalar result:

out number v mult() {
vector (number) v =
matrix (number) m = [
return v*m*v;

}

|
—_

out matrix (number) m mult () {
matrix (number) v_row = [[1, 3, 5]];
matrix (number) m = [[4, 5, 6], [2, 1, 71, [3, 5, 2]11;

return v_row*m*transpose (v_row) ;

}

Note that in the first case the Qlang compiler will know that a scalar always will be returned, if the
code could be run. In the second case the dimension of the result is dependent of the dimensions of
the matrices, if they are changed. So the function has to be declared as a matrix.

For multiplication of two vectors elementwise, dot-notation can be used. Same dot-notation can be
used for division but a “regular” division will return the same result, i.e. elementwise division.

vector (number) v = [1, 3, 5].*[2, 3, 5];

3.7.10 Series

The series is a special form of aggregate, based on one or more range objects. The ranges describe a
multidimensional space, and to each point corresponds one element that can contain any object,
vector or matrix. Each element must, however, contain the same type of object.

As opposed to a vector or a matrix, the series contains information about the range that has been used
to produce the aggregate object. Therefore, series are very useful when dealing with historical time

Page 36

series data, or when producing graphs with equidistant values on the x-axis. For example, a series can
contain a date range together with prices on an instrument for the date range. A series can be
converted to a vector, but then the information about the range is lost.

In practice, a series is a compact way of making the familiar 'for-loop' construction, and keeping the
information about the range. To construct a series you can either call a function with a series return
type or use the keyword series. When defining a variable of any type of series or using a series as a
return type you have to specify the series. it is done with the following syntax:

series<loop type>(calculation type)

where loop type is the type of the loop variable, for example a number or a date, and
calculation type is the type of the values calculated, for example a number, an instrument, a
vector(number) etc.

This is an example of a one-dimensional series:

number myHelpFunction (number x)

{

return X * x;

}

out series<number> (number) myOutExpr ()

{
return series(i : 1, 10, 1; myHelpFunction(i));

}

The first function takes one number argument and multiplies the number with itself. The second
function calculates the content of a series. In the return type we have specified that the loop goes over
numbers and the resulting values will be numbers as well. The first “arguments” in the series definition
(before the semi-colon) are defining the range, as it states that the loop variable i will start at one and
go to ten with step one. The last argument is the expression that is evaluated for each value of each
loop variable. The return object will be a series of ten numbers: 1*1, 2*2, and so on. When the function
myOutExpr is attached to a table you will see the range in the first column and the result from
myHelpFunction in the second column.

The series function is often used to loop over time series data having dates as input or over numeric
values for curve creation, in particular when creating graphs.

Important news! In Quantlab workspaces, or lib files, created in version 2.4 or earlier, you must change
the series definitions. The type of the loop variable has to be specified and the range function has to
be removed. Note also the use of semi-colon in the series definition. It is no longer possible to create
multi-dimensional series of the type series<date><number> ...

It is also possible to create a series where each element is a vector or matrix. One common way is to
use the vector expansion, as in the following example:

series<number> (number) my series (number x) {
return series(t: 1,10; x*t"2);

}

out series<number>(vector (number)) vector series() {
vector (number) v = [1, 4, 6];
return my_series(v);

Page 37

There only exists series of vectors, not vectors of series. But series of vectors can for example be
efficiently applied when calculating time series dependent statistics for several financial instruments,
stored in a vector.

It is possible to do vector algebra manipulations on a series of vectors, for example taking a scalar
product:

out series<number> (number) series prod() {
series<number> (vector (number)) y = series(t: 1,10; [1, t, t"2]);
vector (number) x = [1, 2, 31;
return y*x;

A financial application of this could be to calculate the value of a portfolio; then y would contain daily
prices for a number of assets and x the corresponding asset holdings (constant over time). Then the
series_prod would give the daily value of the portfolio.

In general, vector manipulation, such as inner product or concatenation, can be done on two series of
vectors, affecting each vector separately, for example:

out series<number> (number) series prod2 () {
series<number> (vector (number)) a = series(t:0, 10; [t, t*t]):;
series<number> (vector (number)) b = series(t:0, 10; [2*t, 2*t*t]);
return a*b;

where a vector of number is returned, or:

out series<number> (vector (number)) series_concat(){
series<number> (vector (number)) a = series(t:0, 10; [t, t*t]):;
series<number> (vector (number)) b = series(t:0, 10; [2*t, 2*t*t]);

return concat (a,b);

where a series of vector with four elements is returned.

It is also possible to retrieve particular elements from a series using brackets []. The index value within
the brackets starts at zero for the first element and then increases by one for each element,
independently of the range type. For example,

out number test () {
series<number> (number) x = series(t: 5, 15; t*2);
return x[0];

This function will return 25.
There is a possibility to expand over a series similar to vector or matrix expansion (3.7.7). For example
you may write a function £ that takes to scalars and call it by two series<number>(number):
number f (number x, number y) = x*y;
out series<number> (number) s () {
series<number> (number) sl = series(t: 1, 10; t"2);
series<number> (number) s2 = series(t: 1, 10; t);
return f(sl, s2);
}
The function s will return a series of number with the index range going from 1 to 10. This possibility

can also be useful when you want to plot a scatter graph using two series of number. Then you can
create a series of points:

Page 38

out series<date>(point number) scatter (instrument name i nl, instrument name i n2,
date from, date to) {
series<date> (number) sl = series(t: from, to; instrument (i nl, t).quote());
series<date> (number) s2 = series(t: from, to; instrument (i n2, t).quote());
return point(sl, s2);

}

This function can be attached to a graph.

Some other examples of how to use series objects are found in 8.1, 8.8 and 8.10.

3.8 Flow control

Qlang supports common flow control structures: if/else, while, do/while, for and try/catch.

3.8.1 If, else, do and while

These structures work like in C/C++ (and many other languages), using a logical expression, called
condition in the example below. The if statement has the following syntax:

if (condition) {
true statements;
}
else({
false statements;

}

Alternatively, the else part can be conditional as well:

if (condition) {
statement;

}

else if (condition) {
statements;

}

The while statement is used for iterated calculations, depending on a condition:

while (condition) {
loop i1f true statements;

}

The statement can also be executed before the conditional test:

do{
loop until false statements;
}

while (condition);

3.8.2 The forloop

The for loop has been changed in version 3.0 in order to be in line with C++. Thus the loop variable has
to be explicitly defined (in or before the for-loop), and the start and stop criteria as well as the step
can be defined more elaborately. Here is one example using a range from 0 to 10 with a step size of 2,
and another example using a date range from 1 of March 2002 to 31 of March 2002.

for (number t = 0;t <= 10; t = t+2){
loop statements;

}
for (date t = #2002-03-01; t <= #2002-03-31; t++){
loop statements;

Page 39

This means that if you use 0 as start and < as end condition the for loop will correspond naturally to
the vector indices. Note that for loops in workspaces created in version 2.4 include the end point which
corresponds to a <= end condition. Assume you have the following code in Quantlab 2.4:

out vector (number) for 24 () {
vector (number) x[101];
for(i:0, v _size(x)-1)
x[i] = 1;
return x;

This should in Quantlab 3.0 be changed to:

out vector (number) for 30 () {
vector (number) x[10];
for (number i = 0; i<v_size(x); i++)
x[1i] = 1;
return x;

For your convenience, it is not necessary to change the for loop in Quantlab 3.0 as the old syntax is still
valid. However, you are advised to make the change as the old style for loop may be obsolete in later
versions.

Note! Since ver. 3.1.4029 range based for-loops are introduced.

out integer t(integer n) {

vector (integer) v = vector(i:n;i);

integer s = 0;

for(i:v) // reads "for each (index)value in vector v"
s += 1i;

return s;

}

// loop variable can be any type such as a date vector
out vector (string) t2() {
calendar cal = calendar ("SWEDEN") ;
vector (date) mydates = vector(i:5;cal.move bus days(today (), 1i));
vector (string) tmp;
for (d:mydates) { //to be read "for each date in mydates"
push back (tmp, weekday s(d));
}
return tmp;
}
// it 1s possible to loop over several ranges of equal length at the same time
out vector(string) t3() {
vector (string) vl = ["hello", "and","goodbye", "are", "we", "good"];
vector (string) v2 = [":", """, "tIw, omgw oow@r, "ev];
vector (string) retl[v_size(vl)];

//example with first element vector used by reference to original vector
//setting the values of that as output

//for each element in vl and v2 fill element in ret i.e. in retl

for (out ret:retl, i:vl, j:v2)

Page 40

ret = strcat(i,j);

return retl;

3.8.3 The switch statement

The switch statement is a substitute for nested if/then/else statements that compare a variable to
several "integral" values (such as a number or an enum). The basic syntax is outlined below:

switch (<variable>)

{
case first value:
< statement to execute when variable equals first value> ;
break ;
case second value:
< statement to execute when variable equals second value > ;
break ;

default:
< statement to execute when variable does not equal any of the cases >

break ;

Here is an example of how to use the switch statement.

out string spell number (number n)
{
switch (n)
{
case 1:
return ("One") ;
break ;

case 2:
return ("Two") ;
break ;

case 42:
return ("Fortytwo")
break ;

default:
return ("Dunno") ;
break ;

3.8.4 Error handling: Try and catch
Try and catch allow handling of errors that may occur. The syntax of the try-catch statement is the

following:

try{
< statement >;
}
catch (error typel) {
< statement >;
}
catch (error type2) {
< statement >;

}
< o>

Page 41

catch{
< statement >;

}

The catch statement takes an error_type as input. To catch all types of errors, the catch statement can
be written without parentheses and argument. The following error types are available in version 3.0:

TYPE NAME Old name Description

E_ABORTED N/A Aborted calculation.

E_CALC ‘calc’ A calculation was unsuccessful, for example "Fit failed" in
a zero-coupon estimation.

E_CONSTRAINT ‘constraint’ Element-wise call using for example different sizes of
vectors.

E_DATABASE 'database’ A database communication failure, for example an
attempt to retrieve a quote in a quote field that is not
defined for an instrument.

E_ENUM 'enum’ Invalid enum string, for example Invalid rate_type.

E_INIT N/A Not initialized object.

E_INVALID_ARG 'invalid_arg' Invalid argument to a function.

E_IO N/A I/O error.

E_NAME_LOOKUP

‘name_lookup'

Error in external name lookup, for example Unknown
instrument.

E_NO_DATA 'no_data’ Data is missing, for example in a price quote.

E_NULL ‘null’ An attempt to use a null value, for example as a condition
in an if-statement.

E_PARSE N/A Parse error.

E_RANGE ‘range’ Index out of range, for example in a vector.

E_REALTIME N/A Realtime feed error.

E_TIMEOUT N/A Time out error.

E_UNSPECIFIC 'unspecific' All other errors.

The categories E_CALC and E_NO_DATA are "soft" errors, i.e., those that Quantlab handles and
converts to null output values if the user does not handle them. The others are "hard" errors: if the
user wants to ignore them, they must be taken care of in a try-catch statement.

Here is an example of how to use the try-catch statement.

out number f (number n) {
vector (number) a = [1, 2, 3]1;
try{
return al[n];
}
catch (E RANGE) {
return 4711;
}
catch(E INVALID ARG) {

Page 42

return 17;
}
catch{
return 42;
}
}

If nis between 0 and 2 the function will return the corresponding element of a. Depending of the type
of error that may occur because of the argument n, the function returns other numbers instead (4711,
17 or 42).

Here is another example of how to use try and catch in combination with the throw() function:

out number f (number x) {

try{
if (x == 1) throw(E UNSPECIFIC, 'hello');
if (x == 2) throw(E RANGE, 'hi');
else return x*10;

}

catch (E RANGE) {
return x*7;

}

In this case we produce errors and throw them, depending of the value of x. If x is equal to two, the
range error is caught and 14 is returned, but if x is equal to one, the unspecific error will appear in the
warnings window with the text 'hello’ and the function evaluation is terminated.

Sometimes it is useful to get hold of the error message. This can be done using a variable called "err"
which is of the object type error. This variable is created by Quantlab when an error is produced and
it is available within the catch statement. Here is an example of how it can be used:

out string test (number n) {
try{
vector (string) x = ['Hello', 'Ciao', 'Salut'];
return x[n];
}
catch (E RANGE) {
return err.message();

}

3.9 Comments

Comments are created with // at the beginning of the row or by using /* and */. Here are examples
of the two possibilities.

// A one-line comment
/* A comment using
two lines */

Important news! The old style comment using % is no longer valid. Please use // instead.

Page 43

3.10 Debugging

The Qlang Developer Editor enables the developer of Qlang code to debug one or several functions
attached to graphs or tables. It is important to notice that what you actually debug is a selected
attached expressions with the input parameters given by the user interface. Follow the procedure
below to debug the code:

1.

In the workspace window, go to Tools | Qlang Developer or press Ctrl + L. An independent
Developer Environment will open.

To debug and step the code, press Ctrl + Shift + D or use menu Debug | Toggle Debugging in
the Editor window.

From here, you can set breakpoints by putting the cursor at any row and pressing F9 or by
clicking the left mouse-button in the left margin of the edit window. A red circle will appear to
indicate a breakpoint.

In the workspace window, run the function (instance) that you want to debug. This will activate
the code for the particular the graph or table.

Step in the code by using the function keys:
Press F5 to continue to next breakpoint,
Press F11 to step into each row of code,
Press F10 to step over,

Ctrl-F5 to finish debugging

When debugging you may inspect the call stack and the values of local and global variables by selecting
View | Debug |Call stack or View | Debug | Variables. Vectors may be expanded by clicking the + sign
in the list.

For more detailed information about the Editor its commands and features, please see separate
document Quantlab Editor 3.1.xxxx.pdf.

Page 44

4 Writing library files

All functions written in an expression window can only be accessed within the workspace. To create
functions accessible to all workspaces you can write library files.

4.1 Creating library functions

In the Editor, select View | Library. This will open a sub window with corresponding to the paths in the
ini-file which loads the library files. Right click in the library tree and use menu to add, select, delete
and change any library files. A new folder can be created for library files at this point. This folder will
be added to the path if it is not already there.

Write the following code in the expression window corresponding to the library file:

number my lib function (number x)
option (category: 'Test')
{

return xX*x;

}

The keyword option is in this case used for defining the category for the function. This means that a
folder called Test will appear in the Function browser, containing the function my_lib_function.

Choose File | and any compile option, which will compile your library file together with all other library
files. This can be done with or without saving the file to disk. Now you can open the Function browser
and inspect your function.

TIP! If you do not wish to compile but rather just check the code for syntax errors, Ctrl + F7 can be
used instead. This would not result in the loss of attached functions in the Workspace in case the
compile fails, which is otherwise the case.

4.2 Writing overloaded functions

It is possible to define overloaded functions, i.e., functions with the same name as another function
but having other parameter definitions. For example, you can define several functions with the same
name and return type but with different types of a parameter. Or you can define several functions with
different number of parameters. Of course, all overloaded functions must have the same return type.

4.3 Adding member functions to object classes

In library files you can write functions that are treated as member functions to existing Quantlab
objects. This means that you can for example hook on your own valuation methods or you can add
methods giving real-time or database data. We illustrate this with two examples.

4.3.1 Adding a valuation method to an instrument

In this example we will show how to add a function giving a number output to an instrument object. A
member function is created by using the dot-notation that also is used when calling the function:

number instrument.my price(instrument i, number param) {
number answer;

Page 45

return answer;

}

The first argument to the member function must be the object itself. After you have compiled the
library file this function will appear in the member function list of the instrument object.

4.3.2 Adding a quote field method to an instrument

In this example we will show how to add a member function to an instrument that returns a turnover
volume for that particular instrument.

First, you have to define the appropriate quote field in the database. See the manual for DatabaseTool
for further information on this subject. Start by defining a new quote field by entering a new row in
the table QuoteDef.

QUOTE_NAME|QUOTE_TYPE|QUOTE_COLUMN_NAME ||FID_COLUM N_NAME |REAL_QUOTE

volume number volume |vo|ume ‘ 0

The volume is of the basic Qlang type number and refers to a column in the Quote table that has to be
defined, and which in this case is called volume. If you want to have real time data, you also have to
define a new column in the table RealtimeLink called volume. There you write the FID number for the
volume for each instrument. The last column is set to zero which means that this quote is not a "real
guote", i.e., it cannot be used as a quote_side when pricing instruments.

Now you have to define a member function that retrieves this data. This is simple as you only have to
call the member function get_quote_num which gives any numeric quote, given the name in the
QuoteDef table:

number instrument.volume (instrument i) {
return i.get quote num('volume');

}

After you have compiled the library file this function will appear in the member function list of the
instrument object.

The string parameter of the get_quote functions is not limited to the type quote_side.

If you try to access a quote_side that is not defined for an instrument, this will give a runtime error of
the type 'database’.

Page 46

5 Using the COM interface

This is a condensed version of the chapter with the same heading in the APl manual "Quantlab API
3.1.xxxx.pdf".

All Qlang functions, including your own functions in library files and dll:s, can be exposed via COM to
Visual Basic. The function definitions are generated by producing a tlb-file. To produce such a file from
Quantlab, proceed as follows.

Save your library files in the path that you set in Tools Options, and restart Quantlab.
Choose Tools, Advanced, Generate Type Library.

To access the Qlang functions from VBA in MS Excel, start VBA and verify under Tools, References, that
the Quantlab COM Library is in the list and is active. If it does not appear in the list you have to browse
to the COM library file glab31.tlb in your Quantlab folder.

In the object browser in VBA all Quantlab functions appear in the gl object with their function
definitions. To get more help on each function, use the function browser in Quantlab.

See the manual for the Quantlab API for more information about the COM interface.

Page 47

6 Using the Inter-Quantlab Communication Server - 1QC

Some applications have the need of sharing information between them. There are many ways of
solving such user interaction depending on the available it-infrastructure. A common method is by
using a common database where users can read-and-write information. For some applications where
data is of a streaming type with very frequent updates a more direct communication might be better.

Having an 1QC server in place will create such a direct communication bridge between users of the
Quantlab clients, regardless if they are using Quantlab through an Excel sheet or direct.

The 1QC server will mimic a real-time source feed such as Reuters or Bloomberg. The difference is, of
course, that you have to provide the IQC with your own streaming data coming from a Quantlab user
within the community.

To get some feel for what the 1QC can do we will look at two different examples. First we will create a
chat room where Quantlab users can send and receive messages to and from a bulletin board. Secondly
we will create a market data feed where a market maker can internally distribute some spreads for an
illiquid bond pricer.

First we will look at how to install the 1QC server

6.1 Step-by-step installation of the 1QC on the server

The 1QC server is only needed on one server/pc. All Quantlab clients can then communicate using the
same server node.

Using the command line - go the folder containing the igcs.exe programme.
Install the service using the following syntax:

C:\> iqcs =S service_name description [-p=port] [-f=state_file]

Go to the services window in the control panel and start the service.

It is also possible to run the 1QC server in non-service mode — in this fashion:
C:\> iqcs —s [-p=port] [-f=state_file]

It will then service requests until the process is terminated.

The 1QC service can be un-installed with the -U command:

C:\> igcs —U service_name

Page 48

Wiewm

File Action

Help

=10l x|

« = | EEFRR 2] 8w

% Services (Local) Mame ¢ | pescription [status | startup Tvpe [Logonas | e
%IMAPI _D-Burning COM Service Manages ... Manual Local System
%Indexing Service Indexes co... Started Autarnatic Local System
%InstallDri\-’er Table Manager Provides =... Manual Local System

i Inter-Ouantlab Comrmunicatio Started Manual I J
%IPSEC Services Manages I... Starked Autarnatic Lacal Swstem
%Logical Disk Manager Detects an... Started Automatic Local Swstem
%Lagical Disk Manager Administrative 5., Configures... Manual Local System
%Machine Debug Manager Supports lo... Started Automatic Local System
%Messenger Transmits ... Disabled Local System

M3 Software Shadow Copy Provider Manages s, .. Manual Local System
%Net Lagan Supports p... Started Autamatic Local System
%ﬁ.hlnl‘ Ter Dark Shavima Saruica D msidee = Mic=hlad I mmal Saruica ;I

Extended h Standard

6.2 Creating a connection to the 1QC server from the Quantlab

client

In the same folder as the Quantlab.exe there should be a file called iqc24.grt or iqc30.grt depending
on the version of Quantlab. This file is the local communication program that will give the
user/programmer the function library used for reading and publishing information to the central IQC
node.

In the glab30.ini file the following tag will tell Quantlab that there is an additional real-time source
available. In this example the IQC service was installed on a server called “glbhill”. If the installation of
the 1QC service was on your local pc, this would be the name of your pc.

iqc {
dll ='iqc30.grt’
feed ='IQC'
server ='glbhill'
port = ‘4711’
}

Now we are ready to start Quantlab and see in the lower right hand corner (green icon) that the IQC is
connected as a real-time source.

Page 49

77T B P

Jescripkion

Mo errors)

BLOOMBERG is down; IQC is up; LOCAL is up; IDMN_SELECTFEED is up; SIM is up; SIX is down

6.3 Example of creating a chat room using 1QC

Let’s start with writing some code to publish rows to the chat.

out result send(string user, out string message)

{
string result = message;
if (!'null (message) || message != "") {
igc_publish ("IQC", "chat",
["user", "time", "message"],
[user, sub string(str(now()), 11, 8), message]);
message = "";

}

return result;

We create a function that takes the name of the user and a message as input. The message we declare
as an “out” parameter which means that it will be called by reference. In the user interface we can
then clear the message box as we reference the message variable and set it to an empty string.

The igc_publish function takes four input arguments;

the name of the feed (here “1QC")

the name of the iqc identifier that will hold our information (here “chat”)

a vector or field identifiers for the different bits of information in the iqc identifier

a corresponding vector with data for each field in the identifier.

As information we send three strings to the “chat” iqc-identifier each time the function is called. This
information will replace the old information that was last updated in the same way as the last price of
a stock coming in the market data feed.

Page 50

After we have published the user name, timestamp, and message we clear the message.

In order to keep track of the history of the chat we can now create a function that will subscribe to the
iqc identifier and its fields and then store all incoming messages in a local vector.

We do not need to ask the iqc server if there is any new information. The iqc server will push any new
messages out to all clients that are connected and listening on a particular identifier. Again, in the
same way as Quantlab would be triggered by a tick from a quote in the real-time feed from Reuters or
Bloomberg.

vector (string) v chat;
out vector(string) recv()

{

push back (v _chat, strcat ([", realtime str("chat", "time", "IQc"), "]
",rt.get("chat", "user", "IQC"), ": ", realtime str("chat", "message", "IQC") 1));

return v_chat;

First we have created a global variable (locally in the workspace) called v_chat. This vector of strings
will hold all our received messages from the chat.

Second we create a function “recv()” that will execute at any time when the chat identifier has an
updated data in it. The push_back function will just add another concatenated string into the v_chat
variable. The function realtime_str() is a generic function that can be used to listen to realtime
information streaming into Quantlab. It takes three arguments; the iqc identifier, the field identifier,
and the name of the feed.

We can now attach both the send and receive functions to two tables in the user interface and we can
start chatting.

Page 51

[# iqc_chat2023 - Quantlab - O *
File Edit View |nsert Table Tools Window Help
{11 Send EI@ ' - BLOOMBERG: up :
send -1 3 . EIKON: idle
messsge [Want to send me the latest CPI prognosis? | . QG up
Recaic : II;EIE_TSLT::AM idle
- F REFINITIV: up
L SIM idle
i (===
recv - 1

[07:53:12] robert : sista chansen

[07:53:13] robert : sista chansen

[07:53:14] robert : sista chansen

[07:55:53] robert : asddstrist att det ska vara sa hér

[08:48:30] robert : sista chansen

[15:23:55] robert : Want to send me the latest CPI prognosis?

[15:24:20] robert : Want to send me the latest CPI prognosis?

[15:24:22] robert : Want to send me the latest CPI prognosis?

[15:24:22] robert : Want to send me the latest CPI prognosis?

[15:24:22] robert : Want to send me the latest CPI prognosis?
Tab Tab

= — NUM

It works! And the colleagues have already started pushing messages of their own ...

6.4 Example of feeding some market-maker corp spreads

We will create a mini-workspace with a table where the market maker can do manual input for three
corporate bond spreads. Then we will create a user workspace that will price these bonds in terms of
a base curve plus the spread published by the market maker.

vector (string) v _instr name = ['CORP_BBB 1Y', 'CORP BBB 5Y', 'CORP BBB 10Y'];
out void publish spread(out vector (number) v _spread) {
for(i:0,v_size(v_spread)-1)

igc.publish('IQC', v _instr name[i], ['mid'], str([v_spread[i]])):

Above is the code for the publishing part of the exercise. We place our three instrument names in a
global variable. Then we create a function with an “out” vector as input argument. When the function
is attached to a table the v_spread vector will be available for input by the user.

The loop will for each spread in the vector publish an igc identifier and for each of these identifiers a
mid quote.

In the second part we create some subscription code that will use the published spreads.

out vector(point number) yields(curve name base c, date d, quote side q) {

Page 52

vector (number)
disc_func f =

vector (number)

vector (number)s =

v_maturity =

zero yields =

[1,5,10];

bootstrap (curve (base c,

d, a));

str to number (rt.get(v_instr name,

return point (v_maturity, (zero yields + s)*100)

We have a function that will return a vector of points that we can attach to a graph. As input to our
function we will allow the user to choose the base curve to price the bonds from. We will also allow
the user to choose for which date to take the market quotes for the base curve as well as the quote

side.

The base curve will be stripped from coupons to a zero coupon curve before we use it for pricing. We
have chosen the bootstrap method. From the fitted curve we extract the zero yields for the maturities

of our corporate bonds.

We then subscribe to the published corporate bond spreads using the realtime_str() function and

divide the basis points with 10000.

’

‘mid',

f.zero rate(0,v maturity,RT CONT);

IIQCI

))/10000;

It is now easy to return the three bonds zero yields as the sum of the base curve and the spreads.

Let’s look at the workspace when we have attached the functions to a table and a graph.

1%} Quantlab

x

Workspace

5] Expression

{ T publish_spread

I v_instr_name

~ L yields

550 Spreads

Corp yields

File Edit View Insert Graph Tools Window Help

m

Reczle
Recak.

= | v_spread

Corpyields

— x
\E=T e e @, || - ®E BLOOMEERG: idle
N W EKOM: idle
LMW 10C: up
L || " mmiocas ide
R L. MILLISTREAME: idle
I+ G-I REFINITIV: up
L SIM: idle
o
(= S

yialds - 1
base < | FURESTR v

d [twday’ =
a [mid v
|

Recske

Corp yields ind spread|

a—{CORP_BBE_1¥

*{corp_pee 5]

(CORP_BBE_10Y)

1000

= — NUM

For every time the market maker updates any of the spreads in the spread vector in his Quantlab
workspace, the pricing will immediately be pushed to all other users listening to these IQC identifiers.

Page 53

7 Output - tables and graphics

Quantlab is designed for both the developer and the end-user of the analytics. To display analytics in
a pedagogic yet comprehensive way, Quantlab have three different "display objects" to choose from.
The expressions can be displayed in a graphical window and/or in a table. There are two table types, a
general-purpose table where any scalar, vector or matrix can be displayed and a special-purpose table
for instrument display.

7.1 General purpose table

A general-purpose table can be created on the menu Insert | Table or by pressing Ctrl T. This table type
will display any scalar, vector or matrix expression. Multiple expressions can be attached to the table.

7.1.1 Attaching an expression to a table

Let's look at a simple example. Open a new workspace by the menu File | New workspace and insert
an expression window by the menu Insert | Expression. Then type the following:

// Example expression to paste in a general table
out series<number>(number)my expr (number n) = series(i : 0, 10; i*i);

Compile this expression in the Editor using the menu File | Compile, or press F7. If you have the
workspace browser open (View | Workspace browser) then you will see a + sign to the left of the
Expression window. Click the + sign and you will see the symbol for the function my_expr. Now, insert
a table using the menu Insert | Table. Drag the expression my_expr from the workspace browser
(pressing the left mouse button) and drop it on the table.

The result should now look something like this.

! Quantiab - O X
File Edit View Inset Table Tools Window Help
Workspace W BLOOMBERG: idle
£ 5] Expression . EIKON: idle
L my_exp W 1QC: up
= i
-] Teble Table S8 e L L0CAL idle
my_espe- 1 my_expr... M MILLISTREAM: idle
of] ooof a0 - REFINITIV:up
00 1.00 L SIM: idle

T 200 400
) .00 5.00

200 1600
500/ 2500
600 3600
700 43.00
800 6400
9.00| 8100
1000 100.00

on(null: hard);

es<number> (number)my_expr(number n) = ser

Example workspace with the my_expr function

Page 54

You can now see the attached expression "my_expr — 1" in the workspace browser by clicking the +
sign to the left of the table symbol. The number behind the expression name will help in keeping track
of which instance of the expression you are working with.

The table will now display an input box for the user to input a value for the parameter n. A table will
recalculate when the return key is pressed, or by pressing the "Recalc" button. If the table includes any
real time data in the expression the table will update on any changed data.

When attaching expressions to tables or graphs Quantlab always creates auto-generated controls
which correspond to the types of the parameters. If you want several parameters to be determined by
the same control you can use the Parameters Options dialog, as described in 7.4.4.

Page 55

7.1.2 Table options and formatting

Parameter canvas

Clicking on the close x, in the upper right hand corner, hides the parameter canvas displayed in the
table. The same function will show by right clicking on the canvas and using the menu choice Hide
Parameters.

Formatting the table

By right clicking on the header a number of formatting options are available:

Format Attachment | Change colour settings and border style
Color and border

Format Attachment | Change font size and style

Font

Format Attachment | Change the number formatting of the selected column
Number

Format Attachment | Change the horizontal alignment of any text in the cells

Text alignment

Auto format Let the font be dependent on the value in the cell (only for numerical
attachments). See 7.1.4.

Column order Change order of presentation when multiple functions are used
Minimal frames Will display table with minimal frame
Display name Change the header name of the column. Dynamic header variables

reflecting the current parameter setting can be inserted by double-
clicking on the parameter.

Rename table Change the name of the table

Holiday Set a holiday calendar for the table. For expressions having date ranges
the relevant holidays will be suppressed in the table.

Hide/show parameters Switch the parameter view on and off

Duplicate Will make a copy of the table.

By right clicking on a specific cell, or multiple selections of cells, the same formatting options are
available by choosing Format Cell. Cell(s) are available for formatting when the selection turns black.
Changing attachment order

The attachment order can also be changed using drag and drop of columns. Put the curser on a column
header, press Ctrl and use the left mouse-button to drag the column to the desired location.

Merging parameters

The parameters that are needed in order to evaluate functions attached to tables can be merged to
common controls. This is done in the same way as for graphs, see 7.3.2.

Page 56

Transposing the table

The table can be transposed so that columns and rows change places. Right click on the table and
choose Transpose.

7.1.3 Vector parameters in general tables

When several input values of the same type are needed for a calculation it is convenient to use a vector
parameter. When attaching an expression containing one or several vector parameters they will show
up within the table. By clicking the right mouse-button on the column head it is possible to set or
change the number of rows in the vector, by choosing "Input parameters|Set rows". If you know that
all input vectors will be of the same length, you may use the choice "Set entire row". Note that
sometimes it may be necessary to check the size of the input vectors in the code.

Vector parameters can be merged within a table as other parameters. They appear in the Parameters
options dialog in a separate attachment symbol.

For some examples of how to use input parameters, see the case studies in 8.6 and 8.7.

7.1.4 Automatic text formatting

In financial applications it is often useful to format the text (or numbers) in a table depending on the
values shown, or other parameters. By right-clicking the column header of an attachment you can
choose Autoformat. This gives the possibility to set up simple rules that changes the font and/or
background colour depending on the number in each cell.

For more complicated situations there is a possibility to set the font and background colour from the
code. The background colour can also be transient in order to flag for a change. For this purpose we
have created the object text_rgb that can be attached to a table. This object is created by calling the
function with the same name:

text rgb(text, [fg], [bg], [transient bg])

where text is the text as a string, fg is the font (foreground) colour, bg is the backround colour and
transient_bg is a logical parameter that makes the background colour transient if true. The colours are
given as RGB-triplets and can easily be defined using the function rgb(), for example:

rgb(255,0,0) (Red)
rgb(0,255,0) (Green)
rgb(0,0,255) (Blue)
rgb(0,0,0) (Black)

For an extensive example of the use of auto-formatting, see 8.13.

7.2 The instrument table

Instrument tables are possible to use in Quantlab 3.0 but are not recommended as the effect of an
instrument table can be obtained through an ordinary table.

Page 57

The instrument table is specially created for displaying lists of instruments and other input/output that
refers to these instruments. The instrument table is itself defined by a vector of instruments and a date
for which any evaluation should be done. Any function or method that can be used on an instrument
can then be displayed in the table. The user can for certain settings change the instrument vector and
evaluation date. There is also the possibility to define the instrument

b ll
~Date vector through a function, see below.
= Today
" Paramater
" Fi 2002-08-28 'I .
e 7.2.1 A standard instrument table
 Parameter Value

e o =] | We will describe the standard instrument table using an example: We
want to display a list of bonds and their current prices and durations.

r~ Instrument

" From curve

| =1| Insert a new instrument table from the menu Insert | Instrument table.A
& From kst "wizard" will ask for which date and which instruments to initially display.
Here is shown the left side of this dialog.

In the date option, only the parameter choice will give the user of the
table a possibility to change the date again. The other two options will fix
Clear | Remove | Insert | the date for the table permanently.

— Either you can let the quote side be a parameter for the user to change,
i |
or you can use the fix value (which is defaulted to the value under Tools

Options.

If your Quantlab already is prepared with curves, choosing a complete curve is obviously convenient.
If not, instruments can be chosen from the list of available instruments.

Tip! If you have no curves defined in your Quantlab database, it is easily done from the Database tool
that was shipped with your Quantlab installation. See separate manual for further instructions.

The table is now created with your initial choice of date and instrument selection. User controls have
also been added to the table. Next step will be to add our needed information about the instruments
chosen.

Now to some simple programming®: We will need to create an expression having three instrument
methods in order to get the name, price, and duration. For more functions see the function index.

// Example of some functions that apply for instruments

out vector (instrument name) Name (vector (instrument) i) = i.name();
out vector (number) Dirty price (vector (instrument) i) = i.dirty price();
out vector (number) Duration (vector (instrument) i) = i.mac dur();

Note! Any code written to display functions in an instrument table must have the vector of instrument
as the last argument.

! See chapter 3 for more information about programming details. In this example we have created functions that
take a vector of instruments as input argument. Since the instrument table at creation uses an instrument vector
as base, the methods will be evaluated for all instruments in the vector.

Page 58

Compile (press F7) and confirm that the expressions appear in the workspace browser. Now it is simple
to drag-and-drop the instrument information to the instrument table. The result should look
something like in the following picture.

L

il =rers
instr — Mame - 1 Duratio... | Dirty_pri...
¢ | sExGovT 5GE1058 2.5 2025-05-12 1.62 99.27
SGEB1059 1 2026-11-12 3.09 94.33
Instrument tzbie 5GE1060 0,75 2028-05-12 457 90,67
SGB1061 0.75 2029-11-12 5.98 88.67
. SGE1062 0,125 2031-05-12 7.61 81.47
— 5GE1056 2.25 2032-06-01 7.92 96,10
5GE1065 1.75 2033-11-11 9.18 91,90
5GE1053 3.5 2039-03-30 1218 108.49
SGE1063 0.5 2045-11-24 20,49 61.50
5GE1064 1,375 2071-06-23 30,06 55.88

Example of an instrument table with three columns (showing Swedish government bonds)

One of the special features of the instrument table is that it will automatically evaluate any expression
over all the instruments in the chosen vector. A general-purpose table cannot do this.

7.2.2 Formatting the instrument table

By right clicking on the header a number of formatting options are available:

Sort

Will sort the table according to the chosen column

Format Attachment |
Color and border

Change colour settings and border style

Format Attachment |
Font

Change font size and style

Format Attachment |

Number

Change the number formatting of the selected column

Format Attachment |
Text alignment

Change the horizontal alignment of any text in the cells

Auto format

Let the font be dependent on the value in the cell (only for numerical
attachments)

Column order

Change order of presentation when multiple functions are used

Minimal frames

Will display table with minimal frame

Display name

Change the header name of the column. Dynamic header variables
reflecting the current parameter setting can be inserted by double-
clicking on the parameter.

Page 59

Rename table Change the name of the table

Holiday Set a holiday calendar for the table. For expressions having date ranges
the relevant holidays will be suppressed in the table.

Hide/show parameters Switch the parameter view on and off

Duplicate Will make a copy of the table.

By right clicking on a specific cell, or multiple selections of cells, the corresponding formatting options
are available by choosing Format Cell. You can select multiple columns or cells by using the left mouse
button. Cells or column headers are available for formatting when the selection turns black.

The attachment order can also be changed using drag and drop of columns. Put the curser on a column
header, press Ctrl and use the left mouse-button to drag the column to the desired location.

Note! The parameters that are needed in order to evaluate functions attached to tables can be merged
to common controls. This is done in the same way as for graphs, see 7.3.2.

7.2.3 Creating instrument tables using an instrument vector function

It is possible to create instrument tables based on a vector of instrument that is defined through a
function. If you write a function returning a vector of instruments, for example,

out vector (instrument) my v 1i(curve name c n, date d){
return curve(c_n, d).instruments();

}

this function will be possible to select in the right hand side of the Modify-dialog of the instrument
table. Then the instrument table will iterate over the vector that this function delivers.

The instrument vector function will always be calculated before any other function is evaluated in the
table, see 7.5.3. And the evaluation of an instance of this function causes the evaluation of all other
functions in the instrument table, as they are dependant on the instrument vector. This is a typical
case when dealing with real-time data. It the date d in the function above is chosen to be today’s date,
then by default the instrument vector will be updated with real-time updates on the quotes of the
instruments. Each time any update comes to any instrument the whole vector will be calculated and
then all other functions in the instrument table. Thus the whole table is connected to real time updates
only by the instrument vector. No other explicit real-time update is necessary.

This type of instrument table can of course be used when you want to do a more sophisticated filtering
of the instruments than just using curves and dates.

7.3 The graph window

For many users the graph window is the most popular way to analyse financial data. In order for a
graph to reveal as much information as possible in a limited space a number of special features have
been added to Quantlab's graphing capabilities.

To create a new graph use the menu Insert | Graph or use the Ctrl-G command.

Page 60

7.3.1 An example of a time series graph

In order to list features of the graph component let's go through a simple example first. We want to
plot two time series on the right and left hand y-axis.

First create the expression having three user parameters instrument name, from date and to date:

out series<date>(number) my series (instrument name my instr, date from date, date
to date) {
return series(d : from date, to date; instrument (my instr,d).yield());

}

Since we use parameters in the my_series function, we can re-use this expression for many instances
of the same expression. Compile the expression and drag two instances of the same expression to the
same graph. The graph window should look like this.

L2 Gesph o1 il

Example of graph with two instances of the mySeries expression attached

As we have not yet given the controls any parameter values the graph is still empty. Before we start to
use the graph we will use some of the more common graph formatting features available.

7.3.2 An example of how to merge parameters to common controls

In this example we will always want to have the same from and to date for both instruments, so next
step will be to use the merge control function.

You find the dialog by right clicking on the canvas and choosing "Parameter options" or through the
menu Graph | Parameter options.

On the left part of the dialog we find our functions with their parameters, on the right hand side all the
auto-generated controls are shown. In the top of the right panel there is an empty group for common
controls.

1. Start by choosing the first instance of the my_series function. The available parameters
appear in the left list, if you click on the + sign to the left of the expression symbol Z. Here we
want to merge the date parameters from the two functions.

Page 61

Parameters options

Furctions:

EI@ my_senes - 1
. my_instr

=
@ to_date

F I my_series - 2

All Cartrals:

T8 Comman Parameters
- [Z] my_series -1
B L my_sefies - 2

Merge
[fesore |

2. Grab the from_date parameter and drop it in the right hand list panel on the Common
Parameters group. This creates a new common Date control and removes the corresponding
auto-generated control further below. Give the common control a descriptive name, for
example "From date". In the same fashion, drag the to_date to the right and rename it.

3. Inthe function list on the left click the + sign to the left of the second instance of the function
mySeries. This function's parameters are now displayed below.

4. Drag-and-drop the second function's fromDate and toDate on the corresponding common

controls on the right.

5. You have now merged the date controls for this graph. If correctly done, it should look
something like in the picture below.

Parameters opticns

S

Functions:

El E my_series - 1

oL my_irtr

@ from_date - From date
@ to_date - To date

- E my_series - 2

..... rr_itstr

@ frorn_date - From date
to_date - To date

Ewpand | Collapse

Tookip for parameter to_date

All Controls:

=T Common Parameters

E@ From date
@ my_zernies - 1 from_date

- B [

Q @ my_sernies - 1 to_date

@ my_senes - 2: to_date
B E my_senes - 1
B X my_sefies - 2

Delete ‘ MHew |

Expand | Eollapse|

o |

Cancel

Example of merging date controls together

So how does the graph look like now, having chosen some instruments and dates to display?

Page 62

Graph

=)

Commen parametars

From date [3007-12-04 -
Todate [today -
my_series - 1
my_ins [5GE1041 -

- 0.050

my_series - 2
my_instr | DE113525= -

Recale

0.040

0.030

0.020

B my_series - 1
W my_series - 2

2008-01-14

2008-03-24

Example of graph having common date controls

The common date controls now drive both my_series functions. "Today" is the key word used in a date
control to always getting today's date after you save and re-open a workspace. Setting today's date

also implies getting quotes in real time if connected to a real time source.

Tip! You can use the merge functionality in order to give the parameter control a user-defined label
text, other than the function name that is the default. In this case you only merge one parameter to

each control.

Now, we would like to have a more descriptive legend text than “my_series - 1”. Double-click at the
graph to get the dialogue Attachment Options for Graph. Choose the Legend tab and delete the default
legend text my_series - 1. Then double-click at the my_instr parameter to the right. It appears within

{} signs.

Attachment options for Graph

S

Attachments

Legend l Format] Mizc]

o X my_series - 1
e B my_selies - 2

Editing the legend text.

Mame: Parameters

ry_series - 1 my_inste

Disat) from_date
1zplay name: to_date

{my_irztr}]

Then do the same with my_series - 2. The effect is that the legend text will be dependant of the choice

of instrument.

Page 63

Graph

e]|

Commen parameters

From cate [3007-12-04 -
To date [qoday .

my_series - 1

mry_instr | 5GR1041 -

my_sesies -2
my_instr [DEq13525= -
|
Recake

The graph with edited legend text.

Of course, you can also type a constant string into the same dialogue, or combine strings with

parameters.

0.050

0.040

0.030

H 5GB1041
B DE113525=

Tip! It is possible to merge parameters on a separate canvas/window that will contain all graphs and
tables’ parameters attached to a specific tab. This option can be found under View | Show tab
parameters or by pressing Alt +5. For more on controlling an entire tab’s parameter space see section
7.4.5 about “merging parameter in a tab”.

7.3.3 Using the graph mode toolbar

When a graph window is active the graph mode toolbar can be found under menu View | Graph mode
or by pressing Alt + 5.

0

Q
g

The buttons guide in which way the mouse interacts with the graph. By default, holding down the left
mouse button over the graph will move the centre left and right.

Zoom in the graph by switching to the magnifying glass and creating an area to zoom in on by holding

down the left mouse button.

Page 64

Enable and disable zooming functions for the left and right y-axis by depressing the L and R button.

To display a value cursor in the graph, enable the line button |*. This will show y- and x-axis values in
the legend box while you move the value cursor left and right in the graph. You can insert several value

cursors by clicking this button repeatedly. To remove the value cursors, use the button marked with |~

To insert a horizontal line use the button with the symbol—"and to remove those lines use the button
with the symbol —.

When changing any parameters used by the graph or when updates come from the real time feed an
auto-zoom function is available. With the auto-zoom turned on it will refocus the graph on every
update that changes position or size of the displayed graphics. It is possible to turn on the auto-zoom
for each axis separately by pressing down the relevant axis button with double arrows.

Further auto-zoom features admit the user to always show the x-axis at the bottom of the graph rather
than at zero, and always show zero level on the left and right y-axis when re-zooming. (The last three
buttons on the lower row of the control these features.)

Continuing our example from 7.3.1 and using the following formatting options ...

1. Right click on the left axis to get the dialogue Graph properties and choose Multiply by 100 to
the right in the Character pane. Also, choose 2 digits for decimal places and % as symbol. Press
the Home button on the keyboard to get auto-scale.

2. Right click on the left axis to get the dialogue Graph properties and tilt the dates by choosing
a 30 degrees slant.

3. Right click on the background of the graph window and choose Graph properties | Titles. Write
appropriate titles for the graph and the axis. After pressing OK, the titles can be dragged and
dropped at the ends of the axis.

4. Right click on the background of the graph window and choose Graph properties | Holiday and
check that Hide weekends are clicked. Then you can also click at Sweden and Germany (for
this example where we have a Swedish and a German bond) in order to hide all days that are
holidays in any of the two countries.

...you will get a graph similar to this one:

Page 65

Graph [E=E [EoB)

Commen parametars 600%

From date 20071205 =]
Todme [y =] | | €M Yield Graph
W SGE1041
e
e []

- 5.00%

my_sesies -2
my_inst [DE113525= -

Recak

400%

3.00%

200%

Note! Any residual holes remaining in the graph, after proper holiday calendar(s) are chosen, are due
to missing data in the historical database. Use your data cleansing tools to repair this missing data. See
manual for the Database tool for help on finding missing data.

7.3.4 Graph formatting options
Right click on data series line (the graph) to:

Change the Order - by selecting a choice in the sub-menu you can change the order for how the graphs
are displayed if you have attached several expressions to the same graph window. The legend text that
corresponds to the last painted graph (in the front) is the last one in the legend text box.

Snap labels — see special chapter about creating labels (not valid for time series graphs)
Linear regression — to display a linear regression line for the time series

Copy — copy the underlying data from the selected graph making it available, for example, for an Excel
spreadsheet.

Copy legend — copy the legend text
Properties — see table below

Properties detail

Functionality Description

Legend Automatic In the display name text box free legend text can be written. Any
legend parameters used in the graph can be attached to the legend by
showing double clicking on the parameter in parameters list. A parameter

current value | is inserted using {} brackets.

of parameters Example: MyGraph showing {mylnstr} from date {fromDate} to

{toDate}

Page 66

Format Graph type Allows for line, column or points.
Point type Options include plus (+), diamond (<), circle (o), square () filled
or not filled.
Color, font, | For vector of lines, a colour scheme can be set.
width
Misc Right/left axis | Choose to place the graph on the right or left y-axis
Regression Change the colour and width of the regression line
Optimise Will give a smoother appearance when zooming in and out.

Right clicking in the graph space reveals:

Attach/Detach Attach and detach any expression from the graph
Show/hide If many curves are attached to one graph it is possible to hide one or
curves more curves temporarily without detaching them from the graph

window.

Graph properties

Holiday

To choose which holiday calendars that the graph should handle. If a
market is chosen, the dates set as holidays will not show in the graph.
Multiple choices are valid. Also weekends can be turned on/off.

Titles

To edit the main graph title, the y-axis and x-axis title. Font, size, and
colour can also be set.

Scale

As default, the scaling is automatic and will follow the zooming. It is
also possible to manually set the min and max scaling for each of the
axis and also lock the scale.

Misc

To change the column width when displaying bar chart style.

Changing font, size, and colour of the legend. Formatting the Value
cursor(s) settings.

Axis

Change the date format, character display, line format for the chosen
axis. Same dialog will show when double clicking directly on any axis
(see description below).

Parameter
options

Display the merge function dialog (see separate description)

Minimal frames

Will minimize the window frame of the graph (or table).

Rename To rename the current graph

Show/Hide To show and hide the parameter canvas

parameters

Duplicate Will create a copy of the whole graph including parameters and

format settings. A reference to the copy will also appear in the
workspace browser.

Page 67

Right- or double clicking on the right or left y-axis and x-axis:

Text angle Edit the slant of the text

Font, size, and | Change font, size, and colour of the x or y-axis

colour

Line width Change the line thickness of the x or y-axis

Symbol Place a symbol or other text behind the numbers (ex. '5.0 %' or '5 Kr')
Date format Use default setting or format display using an interactive wizard

Tip! By pressing the home button on your keyboard the graph will automatically fit and centre the
graph. This feature can be set on automatic by pressing the buttons in the graph toolbar. Holding down

the shift button and the left mouse button will zoom the graph when the mouse is moved.

7.3.5 Scatter graphs

For graphs where data don't come in the form of a series the point function is useful. This function
returns a point object, which consists of the x- and y-coordinate for a point in a graph. A vector of such
object can be used for producing a scatter graph. For example, to plot a square function on some non-

equidistant x-values you may use the following code:

out vector(point_number) my scatter graph() {
vector (number) x = [0, 0.5, 1, 2, 5, 101;
vector (number) y = x"2;

return point(x, Vy);

Scatter E @

100 1 -
e
Py
/
-
80 1 el
-
Py
ey
B0 T -
e
-
7
Py
40 T il
e
-
.-'/
20t ——
0 e
0.00 2.00 4,00 £.00 8.00 10,00

Page 68

Result of the scatter graph example above

This function can be attached to a graph window and can then be formatted to show just the points or
with lines in between, as described in 7.3.4.

7.3.6 Plots using matrices or series(vector(number))

It is possible to plot a matrix of numbers or a matrix of points. Quantlab will interpret the matrix as a
collection of column vectors that will be plotted as usual vectors.

Likewise, a series of vector of numbers will be interpreted as a collection of series which each will be
plotted.

In order to distinguish between the columns in the matrix or the different series you can use the start
and end colouring in the Properties dialog of the attached expression.

Similar plots can be created using a series with two range variables, see 3.7.10.

7.3.7 Column graphs

To produce graphs consisting of columns, mark the data series (the graph) and click the right mouse
button. Select Properties and select the tab Format. Here you can select the graph type column and
set the width of the columns.

7.3.8 Bar charts (hi-lo etc)

Often, financial data are displayed in the form of bars showing for example high-low or open-close
prices. This can be done in Quantlab by using the pair object. It is simply a vector of two numbers that,
when used in graphs, it is displayed as a bar starting at the first number and ending at the second. For
instance, the following expressions can be used for creating a bar chart with bid and ask yields.

out number my yield(instrument name i n, date d, quote side q) =
instrument (i n, d, g).yield();

out series<date>(pair) my high low(instrument name i n, date from, date to){
return series(d: from, to;

pair(my yield(i n, d, 'bid'), my yield(i n, d, 'ask'))):;

}

If the second function is attached to a graph, it will show a typical bar chart which can be formatted
with the desired bar width etc.

In the formatting dialog you can choose between line and column. In the first case the width will be
constant, in the second case it will change when zooming in the graph window.

Graph E@

_ %
mry_high o - 1 my_high_low - 1
in |3 1752033-11-11 «

from |today-10bd - 0.0285 | | | | | | |

1o [today -

|
00230 |

Raecalc

Reczlc

0.0275 ‘

2023-09-01 - 2023-09-05 2023-09-07 - 2023-08-11 2023-09-13 - 2023-09-15

Page 69

In order to show the dates on the grid it can be necessary to right click on the background of the graph
and choose Graph Properties | Axis and un-click “When applicable display interval” in the X-axis format
pane. Also, choose the tab Misc and click On grid.

To construct a chart with several values for each date, for instance open-close and high-low, you can
simply attach several functions using pair objects. Of course, it can also be combined with a normal
graph if the number of values is odd.

Pairs can also be combined with point objects. Then the second value in the point object will be a pair
object.

7.3.9 Creating labels

A common case where the point function is used is when producing various kinds of yield curves. Then
itis useful to show labels telling the names of the bonds. The following is an example of how to produce
a yield curve graph with the instrument names.

out vector(point date) yield curve (curve name c n, date d){

curve c¢ = curve(c n, d);
vector (date) maturities = c.instruments () .maturity();
vector (number) yields = c.instruments().yield()*100;

return point (maturities, yields);

}

out vector (label date) yield_curve_labels(curve_name c n, date d){
curve c¢ = curve(c n, d);
return label (c.instruments () .maturity(), c.instruments().name());

}

First, attach the yield_curve function to a graph window and then the yield_curve_labels function.
Then you get a question which function to associate this labels to. If you choose to attach it to the first
function you will get a yield curve with labels connected to each point.

If the labels cover the graph you can drag and drop them where you want. To get them in the original
position you can select the graph, right-click on the mouse and choose Snap labels.

Attention! In this example the curve is constructed twice for the sake of clarity. If there are frequent
real time updates and many curves it may be necessary to store calculated data in global variables,
see 3.5and 7.5.2.

E Graph .:.I.g.l.ﬁl

o yield_curve- 1 [DSL7.0024]
_ 02—,
50 + ___H__._,_A——"_—d_

=T

" —IDSLe0011]

< |DSL&.0009]
451 . ~—{DSL40008

- “~osL7.0007]

/"f “-JDsLs.00 08]
~|DSL5.0005]

40 ¢ .
[DKKDepoON| / DISL 7.00 04]
~———{DSL 5.00 03]

T DKKDepolY|
35 1 DR Depobi]
D
S AL, (=] 5]=]
DKFDEpD
EX]

29 2003-11-12 2007-11-07 2011-11-04 2015-10-28 2019-08-28 2023-06-28

Page 70

Example of a Danish yield curve with labels attached to each point.

Tip! If you only want the labels to appear when holding the curser over a point, you can select the
graph, right-click on the mouse and choose Properties. Then go to the format tab and un-click Show in
the Label box. All labels disappear but each label text will be shown in the yellow box that appears
when holding the cursor on a point.

In the example above, the labels where attached to the graph function, another possibility that could
be useful in some cases, for example bar charts, is to attach the labels to the x-axis. For example, given
the following code

out my graph() = [3, 5, 4]
out my labels() = ['a','b','c']

you can produce labels on the x-axis by choosing that option when attaching the label function to the
graph. If you want bar charts you select the graph and click the right mouse-button to get the
Properties dialog. There you select Show attachment as Column. Note that in order to associate the
labels to the x-axis, the graph function must consist of only a vector of number rather than a vector of
points.

It might be necessary to zoom in or out in order to view the labels correctly.

Br chart fo =]
£
Recsle
Recake

0
5
0 . I .

5

a b [

A simple bar chart.
7.4 Handling parameters

7.4.1 Simple parameter controls

Below follows a list of control choices that can be used for common controls where several parameters
are merged into one control.

Control Used for common instances of: Example of Qlang code

String edit String parameters (ex. 'string’) MyFunc(string myX)

Number edit Number parameters (ex. 12.4) MyFunc(number myX)
Instrument control Instruments (ex. SGB1044) MyFunc(instrument_name myX)
Curve list Curves (ex. EURGOVT) MyFunc(curve_name myX)

Date control Dates (ex. 2002-02-02) MyFunc(date myX)

Page 71

Day count list Day count conventions (ex. | MyFunc(day_count_method myX)
ACT/360)

Rate type list Rate type basis (ex. effective) MyFunc(rate_type myX)

Quote side list Quote side choices (ex. Bid) MyFunc(quote_side myX)

Asset swap list Asset swap calc types (ex. | MyFunc(asset_swap_type myX)
par_value)

7.4.2 The instrument control

The instrument control leads to an extensive dialog identical to the one in DatabaseTool. The first
element in the drop down list box is always the entry “Select instrument...” which gives access to the
instrument dialog. In this dialog you have several possibilities for searching the instrument. You can
also view more extended information about a particular instrument by clicking the Info button in the
top right corner.

Tip 1! To find an instrument, write the beginning of the name in the index tab. The search function
immediately goes to the first instrument that matches what you have written. To select the desired
instrument, you can use the up and down arrows, and the press Enter.

All instruments that have been chosen are saved in the drop down list box.

Tip 2! After a while the number of entries in the drop down list box can be quite long. You can decrease
it by pressing the delete button repeatedly, after having chosen an instrument in the list.

7.4.3 The curve control

The curve control resembles the instrument control as it is a list with one special entry ("Select curve
type...") giving the possibility to limit the number of curves in the list. Each curve in the database is of
a user-defined curve type and in the dialog you can select a curve type that will be used in the list.

7.4.4 Creating common controls using Parameters Options

Common controls in graphs and tables can be used for input to several parameters by the use of
merging in the Parameters Option dialog.

The dialog has to list panes, each showing the same information but in two different ways:
To the left there is a tree showing each attachment (instance of function) with its parameters as leaves.

To the right, there is a tree with groups of controls (common controls and auto-generated controls)
with the controls as branches and all parameters associated to the controls as leaves.

See the example in section 7.3.2 where the concept of merging is explained.

In the Parameters dialog it is also possible to set the order of common controls by using the right
mouse button in the list to the right. The group of common controls is always above the attachment
controls, however.

Page 72

7.4.5 Tab parameters

It is common to organize multiple graphs and tables analysing similar things in the same Tab. Many
times it is convenient to have common controls that guide all graphs and tables within the same tab.
This can be achieved in the specific tab parameter window, which can be moved around and docked
independently. The format of this window is specific to each tab.

To active the tab parameter window use View | Tab parameters, or Alt+5.

At first all parameter controls for every graph and table belonging to the tab will be listed in the
window. It is now possible to merge desired controls into common ones. By right clicking on the tab
parameter window and selecting parameter options, the merge dialog appears. (This is the same
merge functionality available for a single graph or table, as explained in section 7.4.4.)

In an example we wish to merge all curve controls and date controls into two common ones for the
entire tab. Adding two common controls and dragging and dropping the individual function
parameters into the common ones will give a workspace having overriding parameters in a separate
window.

= = = = = =
e T B Generic par rate 21 for SEKSHBHYPO vs SEKSMSWAP 9063000 | (L2 A e v
e s = 2023-09-08 = SHYB 1589 1.5 2024-12-03 4.169 173
iy — o s A - TNEE
sy < |seiamswap o NV ~ln SHYB 1590 1 2025-09-03 4103 5.0
- N — N 1| [sswa 1591 05 ;
o rore N SHYB 1591 0.5 2026-06-01 4029 556
shert | SEKIMSWAP ~ L [P I 7/~ SHYB1592 1 2027-03-01 3.994 41
shor_tenor p—— s n ~ N Resalc SHYB1593 2.5 2027-12-01 2.001 25
TR =] [| SHYB 1594 2 2028-09-01 3.995 29
fong tencr : ‘ | SHYB 1598 1.5 2031-09-03 4.065 2.0
Recakc
o
Recsk 2023-05-24 2023-06-22 szf? -07-21 2023-08-18 [2023-09-15
5 | ‘
-10
Generic barbell ===
show_smpe_barbell- 1 H
o [cExsHEHYPO o W Generic SEKSHBHYPO 2¥ vs 5Y vs 10V 9.299467 ‘
date 2023-09-08
shor s [2F
et) T
w "
. o it .l ”
[] r\/ Iy
— M A/ /\,\JH \‘ P \\,/\ /! /N \J
Recsk
\ \/J‘ f
V l
5 ‘ ‘
2023-05-24 2023-06-22 2023-07-21 2023-08-18 2023-03-15

Example — upper left window — of common tab parameters overriding each individual window’s parameters.

Using the common tab parameter window it is possible to minimize the unnecessary space used by
each window’s parameter canvas. This will also enable the user to use a single control to change
settings for all analysis contained in a tab.

In the Parameters dialog it is also possible to set the order of controls and attachments. In the list of
attachments to the left, click the right mouse button on an attachment and select move up or move
down. To change the order of controls within an attachment, select the corresponding parameter
and use the right mouse button. You can also change the order of common controls by using the
right mouse button in the list to the right. The group of common controls is always above the

Page 73

attachment controls, however.

EG| L= e B Generic par rate 2V for SEKSHBHYPO vs SEKIMSWAP 2,063000
‘Comman parameters A - date 2023-08-08
o | SEKSHEHYPO - 10 N ~ |
horizon_days €0 | \‘_ A \
repo_rate |3.4 | [EF] . ." \
5 f— o
short | SEKIMSWAP ~ / I |
short_tenor |zv | ‘ ‘
middle_tence |sv | 5 |
T
long_renar |1N’ | 2023-05-24 2023-06-22 %Dji-ﬂ?-li 2023-08-18 2023-09-15
\
Recak |
Recak E | |
|
i
name yld | carry| roll 10

SHYB 1589 1.5 2024-12-03
SHYB 1590 1 2025-09-03
SHYB 1591 0.5 2026-06-01
SHYB1592 1 2027-03-01
SHYB1593 2.5 2027-12-01
SHYB 1594 2 2028-09-01
SHYB 1598 1.5 2031-09-03

4.169
4.103
4.029
3.994
3.991
3.995
4.065

17.3|-0.2
9.0

B Generic SEKSHBHYPO 2V vs 5Y vs 10V 8.299467
date 2023-09-08

2023-05-24 2023-06-22 2023-07-21 2023-08-18 2023-08-15

Note! It is advisable not to show tab parameters and specific parameters for the views at the same
time, as the tab parameters override the specific parameters but not the other way round.

7.4.6 Writing tool tips for parameters

For each control it is possible to write a short help text, a tool tip, that will show up when the cursor is
above the corresponding parameter. Open the Parameters Option dialog and select any parameter
you want to describe, write the tool tip in the text box below, and click OK.

There are some exceptions to the tooltip possibility described above: Currently tooltips cannot be
written for vector parameters that appear within a table. For some controls, such as a rate type list,
Quantlab has its built-in tooltips that cannot be overridden.

7.4.7 User defined lists (fill functions)

In many cases it is useful to be able to create a user defined list. For example, you could define a list
that gives the user various options for the calculations of a yield curve, or you could put limitations on
how many instruments that should be shown in an instrument list.

We will describe this feature using two examples. In the first example, we will produce a completely
new list. In this case you create a function that takes a string as input parameter which shows up as an
edit box in the user interface. By attaching a function returning a vector of strings to this edit box you
will create a list containing the elements in the vector. Here is the code:

out number calculations(string method) {

Page 74

number answer;
if (method ==

'bootstrap"') {

// use bootstrap

// answer
}
else 1if (method

= something;

'tanggaard"') {

// use Tanggaard's model

// answer
}

else {

= something;

// use bootstrap

// answer
}

return answer;

}

out vector (string) method list() =

Now, proceed as follows:

parameter of the
| %
Workspace
=1-{E] Expression

- & calculations
- X method_list
[-{I] Table

= something;

['"bootstrap',

First, attach the first function, called calculations, to a table.

first function, as illustrated

'tanggaard’

. E
caleulations - 1 ————————————
wmd | = method_list

Recalc |

"Recalc

Drag the second function and drop it on the edit box as the red arrow indicates.

1

Then drag the second function and drop it on the edit box that corresponds to the method
by

the red arrow below.

calculati...

Having done this, and pressed Recalc, the text box is transformed to a list containing the two entries
given by the vector, see the illustration below.

Workspace

=-{E] Expression
X calculations
- £ method_list
- Tahle

—calculations - 1

rnethod I fioctstra) - I
—Recalc jtanggaard l:

... . =

Recalc |

The text box is transformed to a list.

calculati...

Our second example shows how to construct a list of instruments given a curve name. The first function
calculates the yield of an instrument, given a curve fit.

out number test(instrument name i n, date d, curve name c_n) {

curve c =
fit result f r =

curve (c_n,

d) ;

bootstrap (c) ;

return instrument (i n, d).yield();

Page 75

The second function gives a list of instrument names. (Note that we have set the quote side to an
empty string, which will enforce the system to not look for a quote in the database or in the real-time
source. We have done this, as we are only interested in the names of the instruments.)

out vector (instrument name) instrument list (curve name c n, date d) {
return curve(c n, d, '") .instruments () .name () ;

}

Now, proceed as follows:
— First, attach the first function, called test, to a table.

— Then drag the second function and drop it on the instrument list that corresponds to the
instrument _name parameter of the first function.

This will make the instrument list control of the first function dependent on the second function, i.e.,
the chosen curve. It may be necessary to use the Parameters option dialogue to put the controls in a
natural order:

Parameters opticns ﬁ

Functionz: All Controls:
ElE inztrurment_list - 1 =& Common Parameters
- d-Date E@ Date
B c_n- Select from @ instrument_list -1 : d
El@ test - 1 @ tegt-1:d
@ d - Date [—]EE Select from
EE c_n - Benchmark curve 4 L EE instrument_list -1 ok
MEELi - Instrument: Fill instrurnent_list - 1 [—]@ Inztrurnent: Fill instrument_list - 1
@ tegt-1:0_n
2-I8 Benchmark curve
L EE test-1:c_nh
The Parameters options dialogue.
[Table = >
Coramon poammerers bl test- 1
N e 0.05

Select from [cpcar =
Instrument |cpyc7acs= -
Benchmark curve [cEynEposwap -

Reczk
Reczl

The table after editing the controls.

Fill functions cannot be removed using the Attach/Detach dialog. Instead, open the Parameters
Options dialog and click the right mouse button on a control that has a fill attachment. A drop-down
menu appears where you can select Remove fill attachment. Note that fill expressions can be attached
both to auto-generated controls and common controls.

See also 8.2 for further examples of using fill attachments.

Page 76

7.4.8 Out-parameters in attached functions

If an attached function has parameters marked as out the treatment in the user interface corresponds
to the treatment within the code. This means that you can set such a parameter in the function and
the value will appear in the corresponding control in the user interface. This is particularly useful when
initialising controls or when correcting erroneous input values. For example you could have a
instrument table where the user is supposed to input a yield. To get an appropriate starting value you
could use the market yield of the instruments. For example you could write the following code:

logical initiated = false;
out vector (instrument name) names (vector (instrument) i) = i.name();
out vector (number) price calc(out vector (number) yield v, vector (instrument) 1) {
if(!initiated) {
yield v = i.yield()*100;

initiated true;

}

return i.set_yield(yield_v/lOO).clean_price();

If you attach these two functions to an instrument table the yields will always be taken from the market
when the workspace is opened but then determined by the user input in the table.

Note that, contrary to standard parameters, the values of out-parameters are not stored in the
workspace when it is closed. The reason for this is that, typically, the purpose of the out-parameters is
that you want to initiate the parameters by taking values from a distinct source, such as the real time
data or the database.

See also 8.6 for further examples using out parameters.

Page 77

7.5 Handling calculation order

7.5.1 General rules for calculation order of attachments

In some cases it is important to understand in which order Quantlab evaluates functions attached to
graphs or tables to properly get correct results. This is especially true when using global variables and
ensuring that they have been updated before proceeding with other calculations dependent on the
global variable.

Ordinary function calls do not have a pre-defined calculation order. However, void functions receive
special treatment in the evaluation engine. All void functions in a tab are evaluated first by the engine.
This is also true for multiple expression windows (i.e. all void functions in all expression windows are
evaluated before any other function is evaluated) in the same tab. However, there is no particular
order among void functions, if several void functions are attached to the same graph, for example.
Therefore, it is often best to use one void function and call the others.

Knowing that the void function evaluates first comes in handy when you need control over any global
variables that need to be pre-processed. When this control should be extended to the user, in graphs
and tables, the void function can simply be attached to the graph or table as any ordinary ‘out’
function.

An example;

number c; // the global variable availabe to all functions in the expression window
out void fl() // the ‘out’ keyword exposes the void function to the interface
{
c = rng.gauss();
}

out number f2 (number b)

{

return b + c;

}

out number f3 (number x)

{

return x + c;

}

In the example above we assume that all three functions are attached to the same table. This will
ensure that the global variable c always will be refreshed with a new random number before f2 and f3
are evaluated.

When there comes new input data to an attachment that currently is being evaluated (from the user
interface or from the real time source), all this input data will be used in the next call of the function.
This means that there is no queue of function calls of the same function attachment, so each
attachment can only have three states:

— Evaluation completed

— Evaluation in progress

— Waiting for evaluation, due to all new input data.
The two second cases can occur at the same time.

Often it can be useful to do some initialisations before all other calculations, i.e., on opening the
workspace. This can be done using a global variable that is set by a function that does all initialisations:

logical init _all(){
// Initialization code
return true;

Page 78

logical g init = init all;

A special case in the evaluation order is that in an instrument table, the function calculating the
instrument vector has to be evaluated first. This is because it is impossible to do any calculations at all
before the vector is well-defined. See also 7.2.3 and 7.5.3.

7.5.2 Performance optimisation

An important application of the calculation order in combination with global variables is the case
where you have a time-consuming calculation, for example involving time series data, and some faster
calculations, for example involving real-time data, in the same graph or table. In such a case you could
separate your calculations so the time series calculations do not involve any real-time data and put
them in a void function that puts the result in one or several global variables. Then you can use ordinary
functions to display the values of the global variables and combine them with real-time data. This will
reduce the number of recalculations of the time consuming part to only the cases when it is necessary,
i.e., when the user has changed any input variable and not each time there is a real-time update.

Note! In some cases it may be natural to attach a function that, given an instrument name as a
parameter, retrieves data from a global variable. Then it should be noted that this function will not be
updated in real time if it doesn't also create an instrument. The real time engine is only triggered
whenever an instrument (or a curve) is created using today's date.

7.5.3 Calculation order in the instrument table

The Instrument table has a built-in initiation of the vector of instruments prior to the evaluation of
both the void and ordinary functions. Any change in curve, quote side, or date will trigger a re-initiation
of the vector, then evaluate any void functions, and last evaluate all ordinary functions.

This is also true for the case when the instrument vector is defined through a user-defined function as
described in 7.2.3.

7.5.4 Using buttons to trigger calculations

Normally the calculation of an attached function is triggered by a change in a real-time quote or by
pressing the Recalc button (explicitly, or implicitly when pressing Enter after having changed a value in
a control or in a table). It is also possible to letting an attached function be evaluated only when a
button is pressed.

To get a function controlled by a button, first attach the function to a view (a graph or a table), then,
in the workspace browser, right-click on the attachment and choose Add Recalc button. A button
appears for which you can set a caption text.

Whenever this button is pressed the attached function will be evaluated using the latest real-time
quotes. This is the only way that the calculation of this particular attachment will be initiated. Hence,
it will not be automatically updated by changes in the real time source.

Page 79

8 Case studies

The following case studies are aimed to illustrate common financial calculation subjects. Most of the
examples are programmed using the short form for functions, i.e., one-row functions. Each example
corresponds to a workspace file in the folder \Quantlab\examples\workspaces\.

8.1 Producing a zero coupon curve: zero_curve.qlw

In this example we will take a set of instruments — a yield curve — and calculate zero coupon rates using
the bootstrap method. The zero coupon rates are then plotted against time to maturity in order to
produce a zero coupon curve.

Here is a function that solves the problem:

out series<number> (number) zero curve(curve name c n, date trade d) {
disc_func f r = bootstrap(curve(c n, trade d));
return series(t: 0.1, 10, 0.1; f r.zero rate(0, t, RT EFFECTIVE));

In the first line of code of this function, we create a curve using a curve name and a trade date. Then
we apply the bootstrap function which gives us a fit_result object z_c which contains all information
on the zero coupon rates. What Quantlab does when it performs this row, is that it searches in the
database for a curve with the curve name stored in the parameter c¢_n for the date trade_d. It then
collects all static data for the instruments on the curve on the specified trade date and performs a zero
coupon calculation using the bootstrap method.

In order to plot a graph, we have to produce a series of zero coupon rates. Here we take a maturity
range from 0.1 years to 10 years with a step size of 0.1, and calculate the zero coupon rate for each
maturity using the method zero_rate of the fit_result object.

We have chosen to plot the effective zero coupon rate. The zero coupon rate starts at the trade date
and matures at t years later. As there is no forward start the first argument of zero_rate is set to 0.

The function can be attached to a graph. Although there are no common parameters, you can rename
the parameters by clicking the right mouse button, choosing parameters options and then create two
controls; one for the trade date, one for the curve name. For more information about merging
parameters, see 7.3.2.

Depending on what curves are defined in your database, you can choose a curve and get a zero coupon
curve based on that collection of instruments.

Page 80

[File Edit VMiew Inset Graph Tools Window Help

B o = =)
- o - i S — _— E——

x] —ix
& Workspace S . [E=2|ESE =0 aQ
=B Graph
= radel
¢ L[Tab Parameters Trasel [ioday = li
| @4 Graph oumve [SexGovT = L
: o zero_curve-1 5000 B SEKGOVT lF
: = 1
=[] Expression =
8 Tob Porometers !
{Z] Expression I
_*
&
X’*\ v
v
4000 e
[&
[
3000
I 0,00 2,00 4,00 600 800 10,00 12,00
[Function [view [Time Description
Warmings | Compiler
Graph Expressi
[m [Num[

Correctly applying the example should give a workspace with yield curve and date controls.

Page 81

8.2 Zero coupon curve with blending and choice of methods:
zero_curve2.qlw

The previous case can easily be extended with the option to choose the zero coupon method. Let's say
you will give the end-user the possibility to choose between the bootstrap, Nelson-Siegel, and
Maximum Smoothness methods. Then the zero coupon function in the previous case can be extended
like this:

out series<number>(number) zero curve(curve name ¢ _nl, curve name c _n2, date
trade d, string method, quote side gs) {
curve c¢ = blend curve(curve(c_nl, trade d, gs), curve(c _n2, trade d, gs));
disc_func f r;
if (method=="'Bootstrap"')
f r = bootstrap(c);

else if (method =='Nelson-Siegel')
f r = fit(c, ns(), WS _PVBP, 2);
else i1if (method == 'Max Smoothness')

f r = max smooth(c, SMOOTH C2);
else
throw (E_INVALID ARG, 'Unknown zero coupon method');

return series(t: 0.1, 10, 0.1; f r.zero rate(0, t, RT EFFECTIVE));

We have also taken the opportunity to extend the curve creation with a blending function: This
function will take a curve with short maturities and a curve with long maturities and merge them. If
there are overlapping instruments, they will be removed from the short curve. For other blending
options, see the Function browser. The parameter gs gives the possibility to choose among pre-defined
quote sides (bid, ask or mid).

Instead of letting the user manually type the strings for the zero coupon methods we can create a list
from which it is possible to make a selection:

out vector(string) methods () = ['Bootstrap', 'Nelson-Siegel', 'Max Smoothness'];

This vector function can then be attached to the string control in the user interface that corresponds
to the parameter method.

Graph(2) E@
zer0_curve - 1 T
c_nl SEK3MIMMFRA -~ @I
c_n2 SEKIMSWAP o Vs
method | Max Smoothness
5 | Mid-r ~

Recsk
Reczk

0.035 .

0.00 200 400 6.00 800 10.00

The Maximum smoothness method applied to a blending of two curves.

Page 82

8.3 A zero coupon studio: zero_studio.qglw

This example is a more elaborate version of the preceding zero coupon workspaces. We will not go
through the code row by row but give some general comments.

The most important calculation is done in the void function calc_zero which sets the global fit_result
variable g_f r to the result of a zero coupon estimation of the chosen type. Then there are a number
of functions that use the global variable to produce the zero coupon curve, the forward curve or zero
coupon implied yields for the bonds. As the void function is evaluated first, all other functions will
always use the global variable when it is updated with the most recent real time quotes and user input.

However, if a function only presents data that is based on a global variable, it will not be triggered by
real time updates, therefore the first row of these functions creates a curve of the relevant
instruments. If today's date is chosen this will make these functions triggered by real time updates in
any of the instruments on the curve.

In the user interface, we have merged parameters for all functions in the tab parameter pane. For the
zero coupon models and the weighting methods we have used fill-attachments on the merged
controls.

Page 83

8.4 Pricing a bond relative to a benchmark curve: bond_pricing.qlw

Often fixed-income instruments are priced relative to a benchmark. Either this can be a single
instrument where you simply calculate the yield spread between the two instruments, or a whole
curve. In the latter case you have to calculate the corresponding zero coupon benchmark curve and
then price all cash-flows of the selected instruments using the zero coupon rates. This gives a fair value
of the bond, if it were an instrument on the benchmark curve. The spread between the corresponding
zero-curve implied yield and the market yield is therefore an accurate measure of the spread to the
benchmark curve.

In this example we will produce a graph of the daily spread between a bond and a benchmark curve
during a chosen time period.

As in example 8.1, we must first create a curve using a curve name and a trade date. Then we apply
the bootstrap function which gives us a fit_result object which contains all information on the zero
coupon rates:

disc func zero rate structure(curve name c n, date trade d)
{
return bootstrap (curve(c n, trade d));

}

When this function is calculated, Quantlab searches in the database for a curve with the curve name
stored in the parameter c_n for the date trade_d. It then collects all static data for the instruments on
the curve on the specified trade date and performs a zero coupon calculation using the bootstrap
method.

Now, we want to calculate the spread between the bond and the benchmark. The following line of
code solves that problem:

return i.yield() - i.yield(zero rate structure(c n, trade d));

The function first retrieves the market yield of the bond and then subtracts the yield implied from the
zero coupon function. Note that this yield is calculated from the sum of the present values of all cash-
flows of the bond, valued using the zero coupon curve.

Finally, we want to plot this spread for each day during a chosen time period:

out series<date>(number) spread series(curve name c n, instrument name i n, date
from d, date to d)
{

return series(d : from d, to d ; yield spread(c_n, instrument(i n, d), d)) ;

}

Here, we construct a series from the date from_d to the date to_d and call our spread function for
each day in the date range.

On each day in the date range the following steps are performed:
e Retrieve the instrument data from the database.

e Retrieve the curve data from the database (what instruments are on the curve on that specific
date).

e Retrieve the instrument data for each instrument on the curve.
e Retrieve market prices for all instruments above.
e Calculate a zero coupon curve (a disc_func or fit_result).

e C(Calculate the present value of all cash-flows of the bond.

Page 84

e Convert the present value to an equivalent zero-implied yield, using the calculation method of
the bond.

e Calculate the spread between the market yield and the zero-implied yield.

bond_pricing - Quantlab [= ===
File Edit View Insert Graph Tools Window Help
= | 4] Graph [E=EESB(E>) b
W& Workspace = =%
Graph Common parameters
(2] Grap v [Garme <] W Spread between CAI 568 and SEKGOVT X
&) Graph 10000
o spresd_series - 1 Bench [Sccont - [T
=[] Expression From [2005 1022 - ’F
-7 Tab Parameters To el =] P
= Expression
L spread_series Recakc
Recalc i‘
5000 x|
iv
s
F«‘-w-w,m ’01__
0,000 ™
5,000
20060327 20070112 20071029 20080816
*
[saurce Time | Description -
o ExpressiomiBxpression 2008-0.. (Mo errars)
f Expression\Expression 20080, (Mo errors)
o ExpressiomiExpression 2008-0.. (Mo erars)
o Expression\Expression 20080 (Mo errors)
A Frnressi 102-1 (Bl errarst =
Wamings Compller
Graph Expressi..
- — HLM

The example — showing a Swedish mortgage bond spread to the SEKGOVT curve.

Page 85

8.5 An instrument table with spreads to a benchmark curve:
bench_spreads.qlw

In this example we will make use of an instrument table. This is a special-purpose table where each
row corresponds to a particular instrument and each column corresponds to a function that operates
on the instruments. Actually, the function takes as input parameter a vector of instruments which
corresponds to all rows in the table. See 7.2 for general information about the instrument table.

First, create an instrument table by choosing Insert and then Instrument Table in the menu bar. In the
Instrument Table dialog you will be able to decide which yield curve or which instruments that should
form the instrument vector for the table. You can also choose trade date and quote side for the
instruments. These settings can be changed in the parameter pane if you press the button called
Modify.

The first column in an instrument table typically contains the instrument names. This can be done by
attaching the following expression to the instrument table:

out vector (instrument name) names (vector (instrument) i) = i.name();

The input parameter i is set by Quantlab according to your choice in the Instrument Table dialog. In
the same manner you can create functions that will give the maturity dates and the yields of the
instruments:

out vector (date) mats(vector (instrument) 1) = i.maturity();

out vector (number) yields(vector (instrument) 1) = i.yield();

For the calculation of spreads, we will proceed similar to the example in 8.2:

out vector (number) yield_spread(curve_name c n, date trade d, vector (instrument)
i){

disc_func f r = bootstrap(curve(c_n, trade d));

return i.yield() - i.yield(f r);
}

Note that in the yield spread function we have changed the instrument parameter to a vector of
instruments. The vector of instruments has to be the last parameter of the function. In order to only
do the bootstrap calculation once, we save the fit_result object in the local variable f_r.

If you attach all these functions to the instrument table you will get a table of spreads to a given
benchmark curve.

Probably, you want to see the yields in percentage points and the spreads in basis points. This can be
done by right-clicking the appropriate column header and choosing Number format. In the Number
format dialog you can choose to multiply all numbers in the column by a factor, for example 100 or
10,000.

You can also right-click to reach menus for formatting the cells in the table and the column header
text. For example, in the Column display dialog you can set the display name of the spread column to
“Spr to ” and then double click on the c_n parameter in the list box to the right in order to get the
current curve name in the header. The column header will then be “Spr to SWAP” if you have chosen
a curve called SWAP.

Page 86

8.6 Extending spread calculations with user input:
bench_spreads2.qlw

The previous example can easily be extended with a possibility to manually input the yields. In order
to get relevant yields to start with the workspace will present the market yields in the input column.
To be able to differentiate between the two cases (1) the first time the calculation is done, or (2) when
a manual input is done, we have introduced a global variable g_initiated:

logical g initiated = false;

out vector (number) yield spread(curve name c_n, date trade d, out vector (number)
yields, vector (instrument) 1) {
if(!g initiated) {
yields = i.yield()*100;
g initiated = true;
}
disc func f r = bootstrap(curve(c n, trade d));
return yields/100 - i.yield(f r);
}

When the workspace is opened and the function is evaluated for the first time, g initiated is false,
but each time the user makes an input in the yields column, g initiated will be true. Thus, the
workspace will use the market rates for the first time and then the user input.

As the function is attached to an instrument table, the input vector yield spread will automatically
have the same length as the instrument vector i.

Page 87

8.7 Calculating covariances: covariance_matrix.qlw

This simple example shows how to use vector expansion and how you can use vector input in tables.
We will calculate a covariance matrix and a correlation matrix using price quotes for some instruments.

We start by creating a time series with logarithmic changes of quotations on one instrument:

out series<date>(number) log series(instrument name i n, date from d, date to d) =
change (series(t : from d, to d; log(instrument (i n, t).quote())));

The function change operates on the series and takes the difference between each value and the
previous one. If one of the values is Null, then the value of the change also is Null.

This function can be called using vector expansion in order to calculate the covariance matrix:

out matrix(number) covar matrix(vector (instrument name) i n, date from d,
date to d) =
covariance (log series(i n, from d, to d));

This function can be attached to a table where you will have to set the number of rows in the input
vector of instrument names. This is cone by right-clicking on the corresponding column header and
selecting Input parameters.

If we instead want to have the correlation matrix we write:

out matrix(number) corr matrix(vector (instrument name) i n, date from d,
date to d) =
correlation(log series(i n, from d, to d));

Page 88

8.8 Creating a simple portfolio Value-at-Risk function:
Portfolio_VaR.qlw

This example will use the matrix calculation possibilities in order to calculate a Value-at-Risk measure
for a small portfolio. Actually we will test three different VaR models.

In order to get easy access simulation possibilities, we will expose the most important parameters to
graphic interface. The function definition nmb
looks like this

out vector (number) myRisk(vector (instrument name) i n, vector (number) w, number
conf, number horizon, date startdate, date enddate)

The parameters are instrument names and their weights and a confidence level and horizon number
of days. The dates startdate and enddate are used to choose the date-range for the covariance matrix
calculation.

We will use the fact that a series expression can take a vector of instruments as input and return a
series of vectors of numbers. The objective is to extract the time series (the clean price) for the chosen
instruments and the period specified between startdate and enddate. We also take the logarithmic
changes:

series<date> (vector (number)) price series =
series(d:startdate,enddate;instrument (i n,d) .clean price());
series<date> (vector (number)) log series = change(log(price series));

We can now create the covariance matrix from the logarithmic changes. To analyse the difference
between VaR methods using different time weighting, we create two covariance sets. The first row
produces a standard set and the second a RiskMetrics set.

matrix (number) Cov = covariance (log series);

matrix (number) CovExp = covariance exp(log series,0.94);

As a third method, we compute the daily portfolio returns as a percentage. Multiplying the time series
of vectors with the weights will return the daily portfolio value. For each day there will be an inner
product of the returns and weights:

series (number) dPortf = change (log(price series*w));

We are now ready to conclude and return the three equivalent Value-at-Risk figures together with the
sum of weights:

number A = sqrt(w*Cov*w*horizon)*inv normal (conf) ;

number B = sqrt(w*CovExp*w*horizon)*inv normal (conf) ;
number C = std dev(dPortf)*sqrt (horizon)*inv_normal (conf) ;
number D = v_sum(w);

// return a vector with the results
return [A, B, C, DJ];

We will not give a lesson on Value-at-Risk formulas here but concludes that we again use Quantlab’s
series and vector capabilities to write the formulae in short-form.

Page 89

8.9 Calculating tail rates: tail.qlw

This is another example that illustrates some vector functions. We will calculate tail yields for some
chosen yield curves. A tail yield is a zero-coupon forward rate between the maturity dates of two
consecutive bonds. In order to perform the calculations we have to have two vectors with the
settlement dates and the maturity dates for the forward rates, respectively.

First we define two simple help functions:

disc_func boot (curve name c, date d) = bootstrap(curve(c, d));
vector (date) mat (curve name c, date d) = curve(c, d).instruments().maturity();

With the second function we can take out the settlement dates and the maturity dates for the forward
rates. The question is now how to extract the correct settlement and maturity dates for the tail rates.
The first settlement date is the maturity date of the first bond and the last settlement date is the next-
to-last maturity date. For the maturity dates of the tail rates it's the opposite: The first is the next-to-
first maturity date among the bonds and the last is the last maturity date of the bonds. This can be
solved by using the sub_vector function:

vector (date) settle(curve name c, date d) = sub vector(mat(c,d), O,
v_size (mat(c,d))-1);

vector (date) matur (curve name c, date d) = sub vector (mat(c,d), 1,
v_size(mat(c,d))-1);

Remember that vectors are indexed starting at 0. In order to calculate the tail rates we use bootstrap
and extract the relevant zero coupon yields:

vector (number) tail (curve name c, date d) = boot(c,d).zero rate(d, settle(c,d),
matur (c,d), RT SIMPLE, DC ACT 360)*100;

In order to plot the tail yields versus the maturity dates we use the following function:

out vector(point date) tail graph(curve name c, date d) = point(matur(c,d),
tail (c,d));

To get labels with instrument names the function names_matur is attached to the tail_graph functions
in the graph.

If we want to look at a particular tail rate development over time we can write:

out series<date>(number) tail series(curve name c, instrument name il,
instrument name 12, date from, date to) =
series(d: from, to; boot(c,d).zero rate(d, instrument(il, d).maturity(),
instrument (i2, d).maturity(), RT_SIMPLE, DC _ACT 360)*100);

Obviously, the maturities of two bonds are required to calculate one tail rate.

Page 90

8.10 Has the market been wrong or right?: expectations.qlw

This is an example of how you can create quite interesting graphs with a very limited amount of
work. We are going to plot a graph of the development of the 90 days rate, together with some
graphs showing the market's expectations of the same rate, i.e., forward rates.

First we define our zero coupon function, for example the following:

fit result my fit(curve c){
fit result f r;
try
return fit(c, ns svensson(), str to std weights('pvbp'), 2);
catch
return f r;

}

By using the norm euqal to 2 in the fitting algorithm, price discrepancies are measured using the sum
of squares.

This function will be used in two other functions. The first one deal with the historical time series of
the fixed short rate:

out series <date> (number) z_series(curve_name cn, date from, date to, number
tenor) {
return series(t:from, to;
my fit(curve(cn, t)).zero rate(t, t, t + tenor, RT SIMPLE,
DC _ACT 365));
}

When dropped in a graph window this function will plot the simple Act/360 rate with a maturity time
given by tenor, in days, for the time period from the from date to the to date.

Then we want to add the market expectations at some given dates. This can be done by plotting the
forward curves, starting at different dates. We write a function for forward curves:

out series<date> (number) z c(curve name cn, date d, number tenor) {
curve c¢c = curve(cn, d);
fit result £ r = my fit(c);
return series(t:d, d+360; f r.zero rate(d, t, t + tenor, RT SIMPLE,
DC_ACT 365));
}

Given a date d and a tenor, this function plots a curve with one year's length (the range is 365 days),
showing at date d the rate from time t to time t plus the tenor.

Drag several instances of this function to the same graph window as the function above. Then click
the right mouse-button and choose Parameters options. Merge the appropriate parameters (for
example the curve name and the tenor), see 7.3.2. If you then choose dates for the forward curves
during the period for the first function you will get a graph looking like this:

Page 91

280 b ark et expectations and realizations
W 2002-03-M
W 2002-08-03
0O 2002-03-02
200+ @ 20021202
W SEGONVT, 90 days rate
480 1
400 1
380 1

NO0708 20011047 20020125 20020505 20020813 20021121 200303
In this case the market was right about the rising rates during the end of 2001 but then it has
continuously over-estimated the future short rates.

If the forward curves look rough it may be because of omitted weekends in the time scale. Click the
right mouse button on the graph background and choose Graph Properties and the tab Holiday.
Unclick the option Hide holidays.

As we have defined one single function that does all zero coupon calculations we can change this to
bootstrap or any other type of model and all calculations will remain consistent in the workspace.

Another change you might want to do is to let the user choose between rate types and day count
conventions, which is done by introducing parameters for those choices.

Page 92

8.11 Creating an intra-day chart: intraday_graph.qlw

This is an extensive example using global variables for the storage of intraday data. The purpose of
the workspace is to draw a graph of the quoted price of an instrument using each intra-day tick.

The kernel of the workspace consists of the following global variables and function:

// This variable is used to see when the user changes instrument
instrument name i name;

// This global variable stores the vector of quotes
vector (point timestamp) v;

// Shows an instrument's quotes in a graph in real time
out vector (point timestamp) quote vector (instrument name i)
{

number n;

number quote = instrument (i, today()).quote();

// If the vector is empty we must create it
if (null(v) || i _name != i) {
vector (point timestamp) tmpl[l];
v = tmp;
n = 0;
i name = i;

// If the vector has less than two points
// we add the new point
if (n < 2) {
if (n == Il v[0].y() == quote) {
push back(v, point (now(), quote));
}

else { // n ==1 && v[0].y != quote
resize (v, 3);
v([1l] = point (now(), vI[0].y());
v([2] = point (now(), quote);

}
}
// Otherwise points are added only to
// reflect any changes

else {
if (vin - 1].y() == quote) {
if (vin - 11.y() == vin - 21.y()) |
vin - 1] = point(now(), quote);
}
else {

push back(v, point (now(), quote)):;
}
}

else {
resize(v, n + 2);
v[n] = point(now(), v[n - 11.y());
vin + 1] = point (now(), quote);

}

return v;

If attached to a graph this function will extend the tick-graph each time there comes a real-time
update. If an update has the same value as the preceding one, the x-value will be changed to the new

Page 93

time-stamp without adding a new point. The result will be a typical graph consisting of horizontal and
vertical lines.

The global vector v holds the graph data in the form of the Qlang type point_timestamp. It is updated
each time the function is called, either by the real-time input or by the user.

The global instrument name i_name is used to check whether the user has changed the instrument
which should trigger a complete reset of the graph.

The workspace also draws horizontal lines for closing price and updated maximum and minimum.

Note! Attaching multiple instances of the function created above to a graph will not work properly
since they will both share the same instance of the global variable.

Page 94

8.12Using function pointers and classes: fp_test.qlw

In this example we give some ideas of how to use a couple of new features in Quantlab 3.0: Function
pointers and object classes.

We begin by implementing a generic delta function which calculates a numeric delta by calling the
pv-function of an imagined class:

number calc delta(object<l> pos, number function (object<l>, number epsilon) pv) {
number epsilon = 0.0001;
return (pv(pos, epsilon) - pv(pos, 0))/epsilon;

This function assumes that there exist a member function pv that returns the present value, given a
small disturbance epsilon. The syntax object<1> pos means that this argument is a class object of
any type — which in this case must implement the pv-function in a meaningful way.

Let’s try this out by implementing a simplified derivative class and it’s present value function. Note
that we can now implement a delta member function by calling the generic delta function above and
refer to our member function for the present value by the use of a function pointer. We begin with
the derivative class:

class derivative

{
// Member functions
number pv (number epsilon) ;
number delta() ;

// Members
number price ;

} o

derivative derivative (number price)

{
derivative d = new derivative;
d.price = price ;
return d ;

}

number derivative.pv (number epsilon)

{
return log(price+epsilon) ; // A very strange pv indeed

}

number derivative.delta ()

{

return calc delta(this, &derivative.pv) ;

}

Please note that last line where we use this to refer to the class object and supplies the calc_delta
function with a reference to our present value function.

We can now create a derivative object and return the delta value:
out number test derivative (number price)
{

derivative d = derivative (price);

return d.delta();

Page 95

8.13 A condensed market page: market_page.qlw

This is an example of how to build a market page with unlimited number of tables showing quotes for
financial instruments with several price contributors. It uses the test_rgb object to highlight quote
changes.

The function instr(curve_name c_n, date d) can be used repeatedly for creating new instrument tables,
given different curve names. Typically d is today(). The function stores the RICs of the instrumentsin a
global list (a map object). Each time there is a new instrument it is added to the list. So, all instrument
tables share the same list of RICs.

In the function format_yield(string ric) a string_rgb object is produced with formatting depending on
the recent history of changes in the quote. This function is called by the out-function yield(string
contributor, vector(instrument) i) which appends a contributor to the RIC.

When formatting the instrument tables it is convenient to transpose the table, to hide the parameter
list and to use minimal frames. Then you can get something like the tab below:

S . :
motkctpogea-Quenteb L

File Edit View Inset Table Teols Window Help

52 26 47 35
125 95 120100
125 95 120100
125 5 120100
125 95 120100

oo oo
125 5 120100
123 93 17 97

Market Expr |

An example of a market page showing Swedish bonds.

The header of the table (which actually is the attachment name(vector(instrument) i)) consists of the
last two characters in the instrument name and the quote difference from yesterday’s closing. This
special header may of course have to be changed for other markets in order to be meaningful. Also
the database name (in our case QLDemo) which gives the RICs has to be changed to your database
name (i.e., ODBC source).

Page 96

