

Quantlab Editor and Debugger
for Quantlab version 3.1.2067 and later

© 2012-2020 Algorithmica Research AB. All rights reserved.

2

Table of Contents

Introduction to the Editor and Debugger environment... 3

The controls ... 4

Environment appearance .. 6

Short-cuts for Windows, Editor, and Debugger .. 8

The Editor .. 9

Go-to-definition ... 9

Call-tip and member completion ... 9

Multi-caret/cursor editing .. 10

Revert all Changes / Revert to Compiled State .. 10

Other Editor Settings .. 11

Debugging ... 12

Conditional breakpoints ... 13

Multi-thread debug .. 14

Watches ... 15

Adding custom debug value browsing ... 16

Global Find and Replace ... 18

Using the Profiler ... 19

Library file functions ... 20

Encryption ... 21

3

Introduction to the Editor and Debugger environment

This document aims to highlight functions and features of the new editor and debugger environment
in Quantlab introduced with version 3.1.2040 and later.

First, the environment is held in a separate windows structure and no longer as expressions within the
Quantlab workspace itself. The workspace code is still saved in the workspace file.

To open the editor, press Ctrl+L or double click on the expression code in the workspace. This opens
the editor environment in non-debug mode.

Note that the compiler tab/log previously found in the workspace “view messages” window is now
only found in the new editor.

4

The controls

By switching to debug mode using menu Debug | Toggle debugging (or ctrl + shift + D) will open a
predefined set of small working windows. All can be moved around be simply grabbing the header
frame and undocking or docking within the lager window. A set of guiding docking markers will assist.

Windows can be switched on/off using the View menu or by simply detaching and closing them.
Settings will be remembered between sessions in the user registry.

5

Following is a list of widows and their purpose:

Name Usage

Main Editor The editor window itself. Can be split into multiple windows both horizontal and
vertically split.

Workspace Displaying all Expression code files in a particular workspace

Library Showing the library code tree. Right click in the tree to also see built-in functions.

Breakpoints Display all break-points and set optional break conditions.

Threads View running threads and manage in which thread to debug.

Compiler log Show all compiler messages. Double click to go to any compilation errors.

Stack View call stack when debugging.

Watches Add watches for variables and expressions when stepping through code. (Replaces
the “Immediate window” of the old debug environment.)

Evaluation log Run-time messages from running the code.

Variables List of variables and their in-scope values. Displays both scalar and vector values.

Profiler Opens when toggling to File | Toggle Profiling (ctrl + shift + P). Used for
performance profiling.

6

Environment appearance

Open menu Settings | Appearance to customize the environment. Font, fond size, and coloring can all
be adapted to user preference.

To get a predefined style, use the Base Colors drop-down. Using a base color scheme, all individual
components can be adjusted. By double clicking on the color square, a custom color editor will open.
By right-clicking on the color code itself, a menu of pre-defined named colors will open. (It is also
possible to write the color code directly in the control box.

7

Any alterations to color or fonts etc will be stored in the user registry. It is also possible to export the
settings using the import / export buttons. This will enable sharing of a personalized scheme with
others.

See appendix for the complete list and description of the settings.

8

Short-cuts for Windows, Editor, and Debugger
There are many short-cuts available. Some of these are context sensitive and only apply within that context. Below is a
summary of the most import short-cuts.

Context Short-cut key(s) Description

Main F1 Open function browser

 Ctrl + Shift + F, H Open Global Find /Replace in library and/or Editor windows. See detail below.

 Ctrl + Shift + D Toggle Debugging on/off (will generate re-compile)

 Ctrl + Shift + P Toggle Profiling on/off

 Ctrl + P Find library file (only)

 Ctrl + Page up/down Cycle through open windows and expressions

 Ctrl + Tab Cycle through Tabs in Editor window

 Ctrl + 2 Open additional Editor window vertical split

 Ctrl + W Close current Editor Tab

 Ctrl + 3 Open additional Editor window horizontal split

 Ctrl + 1 Unsplit vertical / horizontal split

Glob. Find /Replace Ctrl + I, C Toggle case (in)sensitive search

 Ctrl + F Match any string

 Ctrl + W Match whole word only

 Ctrl + R Search using regular expressions

 Ctrl + D Search in current document only

 Ctrl + S Search in selection only

 Ctrl + L Search in Library only

 Ctrl + K Search in Workspace code only

 Ctrl + O Search in all open documents only

 Ctrl + U Search in all documents

 Ctrl + Alt + Enter Replace All

Editor Ctrl + F Quick find in editor

 Ctrl + H Open Find and replace for current document only.

 Ctrl + A Select All

 Ctrl + Z Undo

 Ctrl + Y Redo

 Ctrl + X, C, V Cut, copy, paste

 Ctrl + Shift + X, C Cut or copy entire line

 Ctrl + T Transpose lines

 Tab Indent using tab

 Shift + Tab Reverse indent

 Ctrl + Space Show tooltip when inside brackets ()

 Alt + right/left arrow In tooltip, cycle through function overloading

 Alt + Up/Down To move line(s) up and down

 Ctrl (+ Shift) + U Switch to lower / upper case

 Ctrl + D For multiple line selection of words, add next occurrence to multi caret editing.

 Ctrl + mouse wheel Zoom in and out in Editor code window

 Ctrl (+Shift) + 0 Go-to definition (when cursor is on variable, function, class or enum)

 Ctrl + Q Jump back from previous go-to-definition

 Ctrl + Shift + I To automatically indent the entire file or selection

Debugger F7 Compile all

 Ctrl + F7 Check for compile errors in editor window

 F10 Step Over

 F11 Step Into (function)

 Shift + F11 Step out of function

 F5 Continue (for highlighted thread, when using multiple)

 Shift + F5 Continue all threads

 Ctrl + F5 Continue all other than active thread

 F9 Toggle break-point on row

 Ctrl + F9 Remove break-point

Many shortcuts used in Scintilla based editors will also work in the Qlang Editor.

9

The Editor

Using the editor should work much similar to other popular editors. Many features from popular
editors such as Notepad++, Visual Studio Code, and Sublime can be found in the new Quantlab Editor.
The main reason for using the Quantlab built-in editor is its direct link to the (multi-threaded)
debugger.

We have already addressed the possibility to work with personalized appearance, by setting fonts and
coloring. Below are some of the key features described one-by-one.

Go-to-definition

 By right-clicking (ctrl + 0) on an Enumerator, Function, Class, Class member, go-to-definition will
appear in the menu. If the function is openly readable and only exist in one instance, it will jump
straight to that place in the expression window or library. If there are multiple instances of the
function, a selectable list will open. If the function is built-in or used from a compiled qll, the list will
high-light <built-in> and the relevant qll will be highlighted.

Call-tip and member completion

When writing a function and setting the first function bracket, a call-tip with all alternative variants of
the function will appear. By clicking on the right / left arrow (alt + right/left arrow key) will cycle
through all the variants. The current variable will highlight. If the call-tip is lost, pressing ctrl + space
will get it back when inside the brackets.

When working with an object, class or enumerator, its available and public members will appear in a
drop-down in alphabetical order.

10

Multi-caret/cursor editing

By double clicking on a variable word or other character in the editor, all instances will highlight. To
enable multiple simultaneous editing, repeated use of Ctrl + D will add next appearance and leave a
caret/cursor point at all those places. Then the all can be edited at the same time.

Using Ctrl + selection (using mouse left click) in code, will leave a caret/cursor at all places where
clicked. Then multi-instance editing can be done.

Using Alt + selection (using mouse left click) will highlight a “box” of lines and open up for multi-
caret/cursor editing at the point where the mouse cursor ends.

Revert all Changes / Revert to Compiled State

When coding in an old library or workspace, revert all changes will undo all changes in the current
file/expression done in the current session. To un revert, either revert to latest compiled state, or
“redo” using ctrl + shift + z.

Revert to compiled state will do just that – revert to latest compiled state in the current file and session.

11

Other Editor Settings

A number of visual features and settings can be found in the Setting menu. The most important are;

Setting Description

Appearance Open the menu for all font and coloring options

Show line numbers Turn line numbers on/off

Show whitespace Display tab / space in the editor

Show line endings Display all line-endings

Highlight current line Change display of current line highlighting, none, box, filled etc

Caret width Number of pixel points to display the caret/cursor line with

Show diagnostics inline Turn on to show message in-line with the code in the editor

Show diagnostics in the margin Turn on to show a graphic element with mouse over diagnostics
in the left column

Auto indent Turn auto indentation on/off

Indent and tab size Set indent and tab size

Indent with spaces Turn on to set indents using space instead of tab

Show indentation guides Show vertical lines to indicate where indentation is set on each
row

Enable Code Folding Show / hide the vertical folding markers on the left-hand side of
the code. Can fold code per bracket tuple.

Auto-save library recovery
backup

Turn on/off auto-save library file. A backup will be created in the
same folder and with the same name as the original with a ~bu~
file type extension. Any time the library file is in uncompiled state
the back-up will be created.

12

Debugging

Start by switching to debug mode using the menu Debug | Toggle Debugging (Ctrl + Shift + D). A default
window layout will appear. Move, close and resize to your preferences.

Breakpoints and conditional breakpoints are set using the mouse on the vertical bar next to row
numbering. Can also be switched on/off using F9 for the line where the cursor is at.

All breakpoints are displayed in the Breakpoints window. Also, breakpoints in the library files will show
here. If an invalid breakpoint is set, it will show as an empty circle.

13

Conditional breakpoints

To create a conditional breakpoint, simply enter a valid logical expression directly in the Breakpoints
window box, in the Condition column.

Conditional breakpoints will be market with a plus in the red circle.

__

Tip! As the conditional breakpoints are code lines that are actually compiled into the code at the point
where inserted, any valid Qlang expression can be used given that it returns a logical.
Example: v_size(vect) > 2 && vect[0] != 0.

__

Breakpoints can be stored on file, shared and loaded into other Quantlab sessions. This can be done
using the menu Debug | Import / Export Breakpoints.

As a complement to setting break points manually, “Break on exceptions” can be configured so that it
automatically breaks on a certain exception. Filter can be set on a specific type and/or thrown
message.

14

Multi-thread debug

If running a multi-threaded program, each individual thread can be debugged using the list in the
Threads window.

If a breakpoint is inserted in the function that is evaluated using multiple parallel threads. A list will
appear. Initially, the pointer will be on the main worker thread, and not show the yellow stop cursor.
By dubbel clicking on any of the threads in the window, its location and variable contents will show.

F5 will continue only the highlighted thread, Shift + F5 all threads, and Ctrl + F5 all but the highlighted
thread. Note that when continuing a worker thread individually, it will finish the task for all threads.
However, the results will not be released and displayed in the output until also the other threads are
released from their respective breakpoints even though there is no more work to perform.

15

Watches

In previous versions of Quantlab, the way to view and interact with a variable during debug was via
the Immediate window. This has now been replaced by the Watches window, having the same
functionality. The expression can be any type of valid Qlang code, at minimum showing variable’s
contents when stepping in the function.

Note that the watch expressions will stay in the Watch window even though stepping out of scope for
that particular variable. It will then show “Undeclared identifier” if not yet passed or just null value.

Variables

In the variables window, all variables in a debug function will display their contents. It will try to show
both simple types and object types if possible. For viewing your own class members etc please view
the section on “Adding custom debug value browsing” below.

Note that you can interact with the values in the variables by simply editing in the control-box. This is
equivalent to how the “Immediate” window used to work.

16

Adding custom debug value browsing

When working with objects and classes, the default is to show the class name in the Variables view
and the Tooltip when debugging. By adding your own custom debug value functions, __dbg_print(),
and __dbg_browse() to your class, the chosen member values will show in both Tooltips and Variable
view. This can be very useful when working and debugging large data structures that is frequently
visited. Using the auxiliary custom defined browse and print, a particular class data is easily found.

The double underscore prefix ensures that these member functions are automatically hidden from
code completion and function browser view.

Below is a complete mock-up example of adding the __dbg_print() and __dbg_browse() to a simple
class.

class my_instr

 option(category: "Curve and Instrument")

{

public:

 my_instr(string ric, date d, string fid);

 integer id();

 string name();

 number quote();

 void __dbg_print(__dbg_label);

 void __dbg_browse(__dbg_split);

public:

 integer id_;

 string ric_;

 date d_;

 string fid_;

 number quote_;

};

my_instr my_instr(string ric, date d, string fid = "22")

 option(category: "Curve and Instrument")

{

 return new my_instr(ric, d, fid);

}

my_instr.my_instr(string ric, date d, string fid)

 : id_(-1),

 ric_(ric),

 d_(d),

 fid_(fid),

 quote_(rt.get_num(ric, fid, "RFA", "IDN_SELECTFEED"))

{

 switch (ric) {

 case "SEK=": id_ = 101; break;

 case "EUR=": id_ = 102; break;

 case "GBP=": id_ = 103; break;

 case "NOK=": id_ = 104; break;

 case "JPY=": id_ = 105; break;

 case "AUD=": id_ = 106; break;

 }

}

integer my_instr.id()

{

 return id_;

}

string my_instr.name()

{

17

 return ric_;

}

number my_instr.quote()

{

 return quote_;

}

void my_instr.__dbg_print(__dbg_label l)

{

 l.set_text(strcat(["my_instr { id: '", string(id_),

 "', ric: '", ric_,

 "', date: #", string(d_),

 " }"]));

}

void my_instr.__dbg_browse(__dbg_split s)

{

 s.resize(5);

 s.set_text(0, "id");

 s.set_value(0, id_);

 if (id_ < 0)

 s.set_hl(0, __dbg_hl.INACTIVE);

 s.set_text(1, "ric");

 s.set_value(1, ric_);

 s.set_text(2, "date");

 s.set_value(2, d_);

 s.set_text(3, "fid");

 s.set_value(3, fid_);

 s.set_text(4, "quote");

 s.set_value(4, quote_);

}

Result of running the mock example above (note also the tooltip on mouse over)

18

Global Find and Replace

Ctrl + Shift + F / H will open the global find and replace window.

Searching can be performed in different contexts.

1) In the Current Document
2) In Selection only
3) In Library files
4) In Workspace expressions
5) All Open Documents
6) All Documents

Further, the search can be done using case sensitive or not, matching whole words or not.

Occurrences will be highlighted when the relevant file is expanded. Click on the line of code to go to /
and open that file.

Advanced search can be done using regex syntax.

To replace all occurrences, press on the icon right of the Replace with dialog (or press Ctrl + Alt + H).
To replace one found match at a time, simply press Ctrl + H, repeatedly.

To revert changes, open each file and use Ctrl + Z to revert the changes in that file.

19

Using the Profiler

Open the profiler using menu View | Profiler (or Ctrl + Shift + P).

In profile mode there are two options, showing the results for each run and then resetting the counter,
or aggregated with total and average run times. To change between the two, right click on the Profiler
pane and choose to Accumulate or not. Here you may also clear the results and start over.

In the Profiler window you will see;

- Which function that is called
- How many calls that was made
- Total number of Ticks (CPU cycles)
- Number of Ticks (CPU cycles) per call

Sort by clicking on the appropriate column header.

20

Library file functions

Right clicking on a folder in the library tree opens the following functions:

Setting Description

Remove Removes the file from being included in startup of Quantlab. It does
not delete the file from the windows directory.

Create New QL file Create a library file in the windows directory and include it in the ini-
file

Add existing QL file Add an existing ql-file from the chosen directory

Add QLL Add existing QLL file from chosen directory

Create folder Create a new folder in the library tree (in the ini-file not on disc)

Create New Library Hive A hive is a separate mini ini-file, that can contain one or several ql
files or qll:s. The main library tree will point to include the hive file
and not the individual code files.

Add Existing Library Hive Include an already created hive file.

Move up/down Move library files, qlls, or hives up or down in the ini file tree. Code
will be compiled from top -> down so dependent code must be
loaded after the files on which it depends.

Quick find (Ctrl + F) Will search in the library only. Note that Ctrl + P will search library
file names only.

21

Encryption

When right clicking on an ql-file, an option to encrypt the file will be given. It will encrypt the file both
in the library tree and also the physical ql-file on disc. To recover a file with a forgotten password,
please contact the Quantlab Support team.

